首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 291 毫秒
1.
A series of Ni–B catalysts were prepared by mixing nickel acetate in 50% ethanol/water or methanol/water solution. The solution of sodium borohydride (1 M) in excess amount to nickel was then added dropwise into the mixture to ensure full reduction of nickel cations. The mol ratio of boron to nickel in mother solution was 3 to 1. The effects of preparation conditions such as temperature, stirring speed, and sheltering gas on the particle size, surface compositions, electronic states of surface atoms and catalytic activities of the Ni–B catalysts were studied. Ranel nickel catalyst was included for comparison. These catalysts were characterized by N2 sorption, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. The catalysts were tested for liquid phase hydrogenation of p-chloronitrobenzene. All of the catalysts prepared in this study had nanosized particles. The preparation condition has significant influence on the particle size and surface compositions of the catalyst. The Ni–B catalyst was passivated by boron; therefore it was more stable than Raney nickel and did not catch fire after exposure to air. The catalysts prepared under N2 flow could suppress the oxidation of Ni by the dissolved oxygen in water and had metallic state of nickel. The catalyst prepared with vigorous stirring at 25°C under N2 stream yielded the smallest particles and resulted in the highest activity. It was much more active than the Raney nickel catalyst. The reaction condition also has pronounced effect on the hydrogenation activity. Using methanol as the reaction solvent increased p-chloronitrobenzene conversion to a large extent, compared to that using ethanol as the reaction medium. The selectivity of main product (p-chloroaniline) was greater than 99% on all of the Ni–B catalysts.  相似文献   

2.
The Pt-Ni catalysts supported on CNTs have been prepared by wet impregnation and the selective hydrogenation of cinnamaldehyde (CMA) to the corresponding hydrocinnamaldehyde (HCMA) over the catalysts has been studied in ethanol at different reaction conditions. The results show that Pt-0.34 wt% Ni/CNTs catalyst exhibits the highest activity and selectivity at a reaction temperature of 70 °C under a pressure of around 2.0 MPa, and 98.6% for the conversion of CMA and 88.2% for the selectivity of CMA to HCMA, respectively. The selective hydrogenation for the CC bond in CMA would be improved as increasing the reaction temperature, and the hydrogenation for the CO bond in CMA is enhanced as increasing the H2 pressure. In addition, these catalysts have also been characterized using TEM-EDS, XPS, H2-TPR and H2-TPD techniques. The results show that Pt particles are dispersed more homogeneously on the outer surface of the nanotubes, while the strong interaction between Pt and Ni would improve the increasing of activated hydrogen number because of the hydrogen spillover from reduced Pt0 onto CNTs and increase the catalytic activity and selectivity of CMA to HCMA.  相似文献   

3.
Yan Li 《Applied Surface Science》2008,254(9):2609-2614
The Pt-Co catalysts supported on carbon nanotubes (CNTs) have been prepared by wet impregnation and the selective hydrogenation of cinnamaldehyde (CMA) to the corresponding cinnamyl alcohol (CMO) over the catalysts has been studied in ethanol at different reaction conditions. The results show that Pt-0.17 wt%Co/CNTs catalyst exhibits the highest activity and selectivity at a reaction temperature of 60 °C under a pressure of around 2.5 MPa, and 92.4% for the conversion of CMA and 93.6% for the selectivity of CMA to CMO, respectively. The selective hydrogenation for the CO double bond in CMA would be improved as increasing the H2 pressure, and the selective hydrogenation for the CC double bond in CMA is enhanced as increasing the reaction temperature. In addition, these catalysts have also been characterized using transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), H2-temperature programmed reduction (H2-TPR) and H2-temperature programmed desorption (H2-TPD) techniques. The results show that Pt particles are dispersed more homogeneously on the outer surface of the nanotubes, while the strong interaction between Pt and Co would improve the increasing of activated hydrogen number because of the hydrogen spillover from reduced Pt0 onto CNTs and increase the catalytic activity and selectivity of CMA to CMO.  相似文献   

4.
The selective hydrogenation of 2-methyl-3-butyn-2-ol (MBY) was performed in the presence of Lindlar catalyst, comparing conventional stirring with sonication at different frequencies of 40, 380 and 850 kHz. Under conventional stirring, the reaction rates were limited by intrinsic kinetics, while in the case of sonication, the reaction rates were 50–90% slower. However, the apparent reaction rates were found to be significantly frequency dependent with the highest rate observed at 40 kHz. The original and the recovered catalysts after the hydrogenation reaction were compared using bulk elemental analysis, powder X-ray diffraction and scanning and transmission electron microscopy coupled with energy-dispersive X-ray analysis. The studies showed that sonication led to the frequency-dependent fracturing of polycrystalline support particles with the highest impact caused by 40 kHz sonication, while monocrystals were undamaged. In contrast, the leaching of Pd/Pb particles did not depend on the frequency, which suggests that sonication removed only loosely-bound catalyst particles.  相似文献   

5.
This work reports the morphological investigation of nanostructured sulfided CoMo catalysts by means of high-resolution transmission electron microscopy (HRTEM). The catalysts were supported on Ti-modified hexagonal mesoporous silica (HMS-Ti) and P-modified HMS-Ti (P/HMS-Ti) materials. The oxide precursors were characterized by specific surface area (SBET), temperature-programmed reduction (TPR), diffuse reflectance infrared Fourier transform spectroscopy in the OH region (DRIFTS-OH) and X-ray photoelectron spectroscopy (XPS) in order to elucidate the influence of the impregnation sequence (successive vs. simultaneous) and the effect of P-incorporation into HMS-Ti material on the morphology of calcined CoMo catalysts. Both TPR and XPS measurements indicate that the catalysts prepared by successive impregnation possess well-dispersed MoO3 and CoO phases, whereas their counterparts prepared by simultaneous impregnation additionally possess the CoMoO4 phase. For all sulfided catalysts, the presence of MoS2 phase with particle size in the range 3.3-4.4 nm was confirmed by HRTEM. Catalytic activity was evaluated in the reaction of hydrodesulfurization (HDS) of dibenzothiophene (DBT) carried out in a flow reactor at 593 K and hydrogen pressure of 5.5 MPa. P-incorporation into the HMS-Ti material led to an overall increase in HDS activity and the hydrogenation ability of the sulfided catalysts. All catalysts proved to be stable during 10 h time-on-stream (TOS) operation. The activity of sulfide catalysts in the target reaction depends linearly on the surface exposure of Co species in the oxide precursors, as determined by XPS, and on the morphology of the sulfide form of catalysts (surface density of MoS2 particles and their sizes) as determined by HRTEM.  相似文献   

6.
With the rapid development of oil hydrogenation industry, the development of oil hydrogenation catalyst has also become a research hotspot. In this paper, ultrasound-assisted precipitation technique is used to prepare Ni/Al2O3 catalyst. The effect of ultrasonic output power on catalyst performance is investigated. The prepared catalyst is applied to the hydrogenation reaction of castor oil. It is found that the prepared catalyst shows the best hydrogenation performance when ultrasonic output power, frequency and ultrasonic treatment time are 80 W, 40 kHz and 600 min respectively. It also indicates that ultrasound-assisted precipitation technique can reduce the particle size and increase the specific surface area of Ni/Al2O3 catalyst so that its activity is improved. In addition, six important elements that should be considered in the development of industrial oil refining catalysts are discussed, and the effects of these factors on the catalyst performance are discussed. Finally, new way for improving catalyst performance is given, and the application of some new materials and methods in oil refining is introduced.  相似文献   

7.
研究了利用乙二醇、甘油、木糖醇、山梨醇、葡萄糖多元醇共浸渍方法促进Ni负载在MCM-41载体上的萘加氢活性.和传统的浸渍方法比较,只要在硝酸盐的水溶液中添加适合量的多元醇即可以提高金属活性中心和载体表面的相互作用,导致5 nm以下超细NiO粒子的形成,以及高分散的催化活性中心和异常高的催化活性;零价Ni的纳米粒子从36.1 nm减少到5 nm以下,同时萘的加氢活性取决于零价Ni纳米粒子的大小.利用多元醇共浸渍制备的负载型催化剂表现出优异的催化活性,即使在55 oC的低温环境中亦表现出100%的萘转化率.  相似文献   

8.
采用逐步湿浸渍的方法制备了一系列含有不同载体和碱促进剂的Ni基催化剂用于生物质基平台化合物山梨醇的氢解反应. 通过反应对载体和碱促进剂进行了筛选和组分含量的优化,碱性促进剂的引入不仅增强了催化剂的碱性,而且通过Ni2+和碱促进剂的强相互作用提高了Ni在催化剂上的分散性;10%Ni/10%La2O3/ZrO2表现出了非常高的氢解活性和较好的二元醇(乙二醇和1,2丙二醇)选择性,金属Ni和碱促进剂La2O3之间的协同作用机理对于山梨醇选择性氢解制备二元醇影响显著. 在优化的反应条件下,山梨醇达到100%的转化并且有超过48%的二元醇产率. 研究中对催化剂进行了XRD、BET、H2-TPR和CO2-TPD表征,用于分析催化剂结构性能. 通过对山梨醇氢解以及中间产物动力学曲线的研究,得出多元醇氢解活性与所含羟基数正相关,产物的最终分布是氢解动力学平衡的最终结果.  相似文献   

9.
Continuously regenerating catalytic soot traps are under development to reduce particulate emissions from diesel exhaust. A good understanding of the processes that take place during soot oxidation is needed to optimize diesel soot trap performance. To gain insight into these processes from the perspective of nanoparticle technology, the effects of catalyst particle size and the interparticle distance between soot and catalyst particles were measured. A model catalyst was prepared by depositing Pt nanoparticles on a SiO/SiO2-coated transmission electron microscope (TEM) grid. A soot surrogate composed of graphitic nanoparticle agglomerates generated by laser ablation was deposited on the same surface. This system simulates, morphologically, catalytic soot traps used in practice. The reaction was carried out in a tubular flow reactor in which the gas phase simulated diesel exhaust gas, composed of a mixture of 10% O2 and 1000 ppm NO with the remainder N2. The progress of the carbon nanoparticle oxidation was monitored off-line by analysis of electron microscopy images of the agglomerates before and after reaction. This experimental method permitted the correlation of reaction rate with particle sizes and separation distances as well as catalyst surface area in the direct environs of the soot particles. The experimental results revealed no effect of Pt catalyst particle size in the range 7–31 nm on the rate of reaction. Also observed were a decrease in the rate of reaction with increasing distance between carbon agglomerates and catalyst particles and a linear dependence of the reaction rate on the fractional catalyst surface area coverage.  相似文献   

10.
A large-scale duct with an explosion suppressor was designed to investigate experimentally the explosion suppression by inert particles for a CH4/O2/N2 mixture. The duct is 25 m long and has an internal diameter of 700 mm. Pressure and flame signals were recorded some distance away from ignitor in the duct. Pressure tracking lines of the shock front for the different inert particle cloud densities and the inert particle diameters were made. The measured results indicate that the shock front is decoupled from the flame front in the inert particle cloud, which leads to a suppression of explosion. Also, the experiments suggest that increasing the inert particle cloud density or decreasing the inert particle diameter can enhance the ability to suppress explosion. For the purpose of validation, a two-dimensional numerical model coupled with the element chemical reaction mechanism for the simulations of the CH4/O2/N2 mixture explosion suppression by the inert particles has been developed. This model makes use of the second-order TVD scheme and the MacCormack scheme to calculate gas-phase and particle-phase equations, respectively. The Strang splitting technique is used to treat the stiffness due to the coupling of the governing equations, while the implicit Gear algorithm is used to treat the stiffness due to the chemical reactions. The effect of inert particle cloud density on explosion suppression was investigated using the model. The calculated results indicate that the accumulation of inert particles slows the propagation of the gas-phase shock front and results in explosion suppression. With increased inert particle cloud density, the explosion suppression is more prominent. The calculated results show a qualitative agreement with the measured results in the large-scale duct experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号