首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
在高十六烷值燃料中加入高辛烷值燃料是控制均质混合气压缩着火(HCCI)燃烧的一种有效策略。本文利用快速压缩机模拟发动机HCCI燃烧过程,在正庚烷中分别添加异辛烷和乙醇,发现在部分稀燃条件下出现低温放热和高温两阶段放热的三阶段放热现象。进一步采用详细化学动力学模拟计算,结果表明乙醇对正庚烷燃烧起到抑制作用。高温第一阶段放热主要由CH_2O生成大量CO放热引起,高温第二阶段放热主要由生成燃烧最终产物CO_2和H_2O的反应引起。  相似文献   

2.
本文采用详细化学反应动力学模型对二甲醚对向流扩散燃烧火焰进行了数值模拟,通过分析二甲醚燃烧过程中基元反应速度、关键中间产物和自由基,得到了二甲醚在对向流扩散燃烧中氧化的主要反应途径.结果表明,反应主要发生在高温区域(大于 800 K),CH2O、H2 和 CH4是重要的中间产物;OH、H 和 CH3是重要的自由基,在生成 CO、CO2和 H2O 的过程中起到关键性作用.  相似文献   

3.
根据碳氢燃料化学反应系统具有层次结构的特性,本文通过分析二甲醚(DME)与液化石油气(LPG)的详细化学反应机理,构建了反映DME/LPG混合燃料均质压燃(HCCI)燃烧的详细化学反应机理.采用该机理应用单区燃烧模型对DME/LPG混合燃料HCCI燃烧的化学反应动力学过程进行了数值计算.计算结果与试验结果对比表明,所构建的DME/LPG混合燃料氧化的详细化学反应机理能够准确预测DME/LPG混合燃料的两阶段放热特性,对低温和高温着火始点的预测很好;但高温反应过程预测欠佳,高温反应机理需要改进.  相似文献   

4.
本文对火花点火激发均质压燃SICI燃烧过程进行了建模,利用发动机试验进行了模型验证,模型能较好地描述混合气被点燃压燃的过程。通过三维数值模拟与解析,对比了纯均质压燃HCCI燃烧模式和SICI燃烧模式下的燃烧过程,分析了SICI燃烧的特点。结果表明,SICI燃烧过程中存在多阶段着火,燃烧呈现出顺序放热。SICI燃烧热效率高,NO_x排放低,是一种汽油机有潜力的燃烧方式。  相似文献   

5.
柴油燃料HCCI燃烧影响因素的试验研究   总被引:4,自引:0,他引:4  
本文采用在进气上止点附近进行柴油喷射,利用缸内高温残余废气促进燃油蒸发形成均质混合气,实现了柴油燃料的均质压燃(HCCI)。试验结果表明柴油燃料HCCI燃烧的放热规律呈现低温和高温放热两个阶段,并且NOx排放可以降低95%-98%。本文主要研究了影响HCCI燃烧的因素,指出负荷增大、进气温度增加和负气门重叠期的增加使HCCI着火提前,而外部EGR率的增大可以推迟着火。因此对于低温自燃性好的燃料,冷EGR是控制其HCCI着火燃烧过程的有效措施。  相似文献   

6.
在一台经改装单缸光学发动机机上,进行不同喷油策略和进气温度条件下均质压燃(HCCI)燃烧化学发光光谱实验研究。实验保证循环供油量一定,燃用正庚烷作为燃料,转速600 r.min-1,进气压力0.1MPa,控制2个不同的进气温度:95和125℃。化学发光光谱研究结果表明,低温反应阶段化学发光很弱,主要源于甲醛光谱;低温反应后期-负温度系数区-高温反应初始阶段主要发光来源还是甲醛光谱;高温反应阶段发光主要来源于CO—O*连续谱,同时在CO—O*连续谱上出现OH,HCO,CH,HCHO谱峰;高温反应后期化学发光明显减弱。与-30°ATDC喷油相比,-300°ATDC喷油时CO—O*连续谱发光强度更大,HCO和OH生成量更多,燃烧反应进行程度更深。较高进气温度下CO—O*连续谱发光强度更大,HCO和OH生成量更多。  相似文献   

7.
正庚烷化学动力学简化模型的构建及优化   总被引:1,自引:0,他引:1  
提出了一个新的适用于HCCI发动机燃烧模拟的正庚烷化学反应动力学简化模型(40种组分和62个反应)。由三个子模型组成:低温反应子模型是在Li等人模型的基础上,定义具体的醛类(RCHO)产物和小分子碳氢产物(Rs)而构建;增加了用于链接低温反应向高温反应过渡的大分子直接裂解成小分子反应子模型;高温反应子模型是在Griffiths等人模型的基础上,去除了无关的基元反应,增加两个关于CO和CH3O的氧化反应而构建。另外,采用遗传优化技术对模型动力学参数进行调整。计算表明,新模型能够在当量比0.2-1.2,温度从300-3000 K的范围内精确模拟正庚烷HCCI燃烧时冷焰和热焰反应过程,与详细模型(544种组分和2446个反应)计算结果吻合较好。  相似文献   

8.
本文通过实验研究了富燃的正丁烷/空气混合物在有、无Pt催化剂蜂窝陶瓷反应器内的气相与表面反应过程。实验结果表明,根据反应温度的不同,正丁烷/空气混合物的催化氧化过程分为三个区域:低温的表面催化反应控制区、高温的气相反应控制区和中温的催化/气相反应共同控制区。在表面催化反应控制区,即使是富燃料混合物,其反应产物也只有完全氧化产物,而不存在CO等不完全氧化产物。在达到气相着火后的气相反应控制区,混合物主要发生部分氧化和热裂解反应过程,表面催化反应的影响很小,反应产物主要是部分氧化产物和裂解产物CO,H_2、CH_4、C_2H_4、C_3H_6等。  相似文献   

9.
用开发的气体喷射系统,研究了缸内喷射CO2对两段喷油实现的准均质压燃(HCCI)燃烧排放的影响.结果表明:通过调节CO2的喷射始点和喷射量,可以有效控制NOx排放.随着缸内CO2喷射始点的提前,燃烧相位推迟,NOx排放降低.在缸内喷射始点为-150℃A ATDC时,随着CO2循环喷射量的增大,缸内最高平均温度降低,燃烧相位推迟,最大压力升高率和指示热效率变化不大,而出于滞燃期的增大,放热率峰值反而比原机略高;NOx排放减小,HC和CO排放增大,烟度变化比较小.  相似文献   

10.
在常压环境下对二甲醚的低温氧化特性做了实验研究,并在不同当量比下研究了预混气中甲醛的生成特性.实验结果表明,二甲醚在200℃左右开始缓慢发生氧化反应,在250~379℃时氧化反应最为剧烈,750℃时被完全氧化为CO2和水;在二甲醚低温氧化产物中,甲醛是其重要的组分,二甲醚在200~400℃温度环境下最容易氧化而产生甲醛...  相似文献   

11.
Fuel-rich combustion of methane in a homogeneous-charge compression-ignition (HCCI) engine can be used as a polygeneration process producing work, heat, and useful chemicals like syngas. Due to the inertness of methane, additives such as dimethyl ether (DME) are needed to achieve ignition at moderate inlet temperatures and to control combustion phasing. Because significant concentrations of DME are then needed, a considerable part of the fuel energy comes from DME. An alternative ignition promotor known from fuel-lean HCCI is ozone (O3). Here, a combined experimental and modelling study on the ignition of fuel-rich partial oxidation of methane/air mixtures at Φ = 1.9 with ozone and DME as additives in an HCCI engine is conducted. Experimental results show that ozone is a suitable additive for fuel-rich HCCI, with only 75 ppm ozone reducing the fuel-fraction of DME needed from 11.0% to 5.3%. Since ozone does not survive until the end of the compression stroke, the reaction paths are analyzed in a single-zone model. The simulation shows that different ignition precursors or buffer molecules are formed, depending on the additives. If only DME is added, hydrogen peroxide (H2O2) and formaldehyde (CH2O) are the most important intermediates, leading to OH formation and ignition around top dead center (TDC). With ozone addition, methyl hydroperoxide (CH3OOH) becomes very important earlier in the compression stroke under these fuel-rich conditions. It is then later converted to CH2O and H2O2. Thus, ozone is a very effective additive not only for fuel-lean, but also for fuel-rich combustion. However, the mechanism differs between both regimes. Because less of the expensive additives are needed, ozone could help improving the economics of a polygeneration process with fuel-rich operated HCCI engines.  相似文献   

12.
This paper presents a joint numerical and experimental study of the ignition process and flame structures in a gasoline partially premixed combustion (PPC) engine. The numerical simulation is based on a five-dimension Flamelet-Generated Manifold (5D-FGM) tabulation approach and large eddy simulation (LES). The spray and combustion process in an optical PPC engine fueled with a primary reference fuel (70% iso-octane, 30% n-heptane by volume) are investigated using the combustion model along with laser diagnostic experiments. Different combustion modes, as well as the dominant chemical species and elementary reactions involved in the PPC engines, are identified and visualized using Chemical Explosive Mode Analysis (CEMA). The results from the LES-FGM model agree well with the experiments regarding the onset of ignition, peak heat release rate and in-cylinder pressure. The LES-FGM model performs even better than a finite-rate chemistry model that integrates the full-set of chemical kinetic mechanism in the simulation, given that the FGM model is computationally more efficient. The results show that the ignition mode plays a dominant role in the entire combustion process. The diffusion flame mode is identified in a thin layer between the ultra fuel-lean unburned mixture and the hot burned gas region that contains combustion intermediates such as CO. The diffusion flame mode contributes to a maximum of 27% of the total heat release in the later stage of combustion, and it becomes vital for the oxidation of relatively fuel-lean mixtures.  相似文献   

13.
Though the combustion chemistry of dimethyl ether (DME) has been widely investigated over the past decades, there remains a dearth of ignition data that examines the low-temperature, low-pressure chemistry of DME. In this study, DME/‘air’ mixtures at various equivalence ratios from lean (0.5) to extremely rich (5.0) were ignited behind reflected shock waves at a fixed pressure (3.0 atm) over the temperature range 625–1200 K. The ignition behavior is different from that at high-pressures, with a repeatable ignition delay time fall-off feature observed experimentally in the temperature transition zone from the negative temperature coefficient (NTC) regime to the high-temperature regime. This could not be reproduced using available kinetic mechanisms as conventionally homogeneous ignition simulations. The fall-off behavior shows strong equivalence ratio dependence and disappears completely at an equivalence ratio of 5.0. A local ignition kernel postulate was implemented numerically to quantifiably examine the inhomogeneous premature ignition. At low temperature, no pre-ignition occurs in the mixture. A conspicuous discrepancy was observed between the measurements and constrained UV simulations at temperatures beyond the NTC regime. A third O2 addition reaction sub-set was incorporated into AramcoMech 3.0, together with related species thermochemistry calculated using the G3/G4/CBS-APNO compound method, to explore the low-temperature deviation. The new reaction class does not influence the model predictions in IDTs, but the updated thermochemistry does. Sensitivity analyses indicate that the decomposition of hydroperoxy-methylformate plays a critical role in improving the low-temperature oxidation mechanism of DME but unfortunately, the thermal rate coefficient has never been previously investigated. Further experimental and theoretical endeavors are required to attain holistic quantitative chemical kinetics based on our understanding of the low-temperature chemistry of DME.  相似文献   

14.
The autoignition of dimethyl ether (DME) with temperature inhomogeneities is investigated by one-dimensional numerical simulations with detailed chemistry at high pressure and a constant volume. The primary purpose of the study is to provide an understanding of the autoignition of DME in a simplified configuration that is relevant to homogeneous charge compression ignition (HCCI) engines. The ignition structure and the negative temperature coefficient (NTC) behaviour are characterised in a homogeneous domain and one-dimensional domains with thermal stratification, at different initial mean temperatures and length scales. The thermal stratification is shown to strongly affect the spatial structure and temporal progress of ignition. The importance of diffusion and conduction on the ignition progress is assessed. It is shown that the effects of molecular diffusion decay relative to those of chemical reaction as the length-scale increases. This is to be expected, however the present study shows that these characteristics also depend on the mean temperature due to NTC behaviour. For the range of conditions studied here, which encompass a range of stratification length scales expected in HCCI engines, the effects of molecular transport are found to be small compared with chemical reaction effects for mean temperatures within the NTC regime. This is in contrast to previous work with fuels with single-stage ignition behaviour where practically realisable temperature gradients can lead to molecular transport effects becoming important. In addition, thermal stratification is demonstrated to result in significant reductions of the pressure-rise rate (PRR), even for the present fuel with two-stage ignition and NTC behaviour. The reduction of PRR is however strongly dependent on the mean initial temperature. The stratification length-scale is also shown to have an important influence on the pressure oscillations, with large-amplitude oscillations possible for larger length scales typical of integral scales in HCCI engines.  相似文献   

15.
Larger ethers such as diethyl ether (DEE) and di-n-propyl ether (DPE) have different oxidation behavior (double-NTC behavior) compared to the simplest dimethyl ether (DME). Such phenomena are interpreted with different reactions and processes in different ether kinetic models, which also predict different formation pathways of oxidation intermediates such as acids. To gain further insights into the oxidation kinetics of linear ethers, ethyl methyl ether (EME), which has a nonsymmetrical structure, was studied in this work. Oxidation experiments of 1% of EME were performed in a jet-stirred reactor at 1 atm, a residence time of 2 s, an equivalence ratio of 1, and over a temperature range of 375–850 K. The intermediates were analyzed with photoionization molecular-beam mass spectrometry. To explain the oxidation behavior of EME, a detailed kinetic model was also constructed. The oxidation of EME spans a wider temperature range than DME, but no obvious double-NTC behavior was observed as DEE. Based on the model analysis and profiles of critical intermediates such as ketohydroperoxides (KHPs) and CH3O2H, the low-temperature oxidation behavior of EME was explained by the chain-branching reactions of the fuel itself and the oxidation intermediates. Abundant species such as aldehydes, acids, esters, and fuel-specific dione species were detected and could be well reproduced by the current model. In particular, acids are produced by the decomposition of KHPs and subsequent reactions of the intermediate CH3CHO. Esters and dione species are mainly formed via fuel-related pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号