首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
Saffar S  Abdullah A 《Ultrasonics》2012,52(1):169-185
The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. One major problem of ultrasonic transducers, radiating acoustic energy into air, is to find the proper acoustic impedances of one or more matching layers. This work aims at developing an original solution to the acoustic impedance mismatch between transducer and air. If the acoustic impedance defences between transducer and air be more, then finding best matching layer(s) is harder. Therefore we consider PZT (lead zirconate titanate piezo electric) transducer and air that has huge acoustic impedance deference. The vibration source energy (PZT), which is used to generate the incident wave, consumes a part of the mechanical energy and converts it to an electrical one in theoretical calculation. After calculating matching layers, we consider the energy source as layer to design a transducer. However, this part of the mechanical energy will be neglected during the mathematical work. This approximation is correct only if the transducer is open-circuit. Since the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realized and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness and different attenuation enabling a compensation of non-ideal real values by changing their thickness was computer analyzed (base on genetic algorithm). Firstly, three theoretical solutions were investigated. Namely, Chebyshev, Desilets and Souquet theories. However, the obtained acoustic impedances do not necessarily correspond to a nowadays available material. Consequently, the values of the acoustic impedances are switched to the nearest values in a large material database. The switched values of the acoustic impedances do not generally give efficient transmission coefficients. Therefore, we proposed, in a second step, the use of a genetic algorithm (GA) to select the best acoustic impedances for matching layers from the material database for a narrow band ultrasonic transducer that work at frequency below the 2.5 MHz by considering attenuation. However this bank is rich, the results get better. So the accuracy of the propose method increase by using a lot of materials with exact data for acoustic impedance and their attenuation, especially in high frequency. This yields highly more efficient transmission coefficient. In fact by using increasing number of layer we can increase our chance to find the best sets of materials with valuable both in acoustic impedance and low attenuation. Precisely, the transmission coefficient is almost equal to unity for the all studied cases. Finally the effect of thickness on transmission coefficient is investigated for different layers. The results showed that the transmission coefficient for air media is a function of thickness and sensitive to it even for small variation in thickness. In fact, the sensitivity increases when the differences of acoustic impedances to be high (difference between PZT and air).  相似文献   

2.
Abstract

Contact stresses in high pressure multi-layer cylinders are sometimes measured using ultrasonic technique. As a measure of the contact stresses the coefficient of reflection of ultrasonic waves from the contact interface between two adjacent outer layers is applied. The coefficient of reflection is an involved function of several parameters. Experimental and theoretical investigations show that this function may change non-monotonously with frequency of ultrasonic waves which may lead to an ambiguity of the assumed criterion. In order to check this function for higher frequencies, measurements of the reflection coefficient from a contact interface between plane steel samples were made for the frequencies up to 190 MHz.  相似文献   

3.
通过数值分析研究了超薄气体的透射与反射光谱特性与其厚度大小的树应关系。研究表明,透射光谱随薄膜厚度的增大而展宽,光谱呈现对称性,而在反射的情况下,这一对称性由薄膜厚度为1/4波长的奇数或偶数倍决定。  相似文献   

4.
郝鹏  吴一辉  张平 《物理学报》2010,59(9):6532-6537
为了分析纳米金表面修饰对表面等离子体共振(SPR)的放大作用,以及其对传感器本身的影响,首先,基于色散介质的吸收理论,通过建立波长型SPR生物传感器四层膜结构的数学模型,理论分析了传感器表面所吸附纳米金对传感器的影响:纳米金的表面修饰,改变了表面等离子体传感器中棱镜表面各介质层内电磁场的能量分布,削弱了金属膜在共振吸收中的作用,从而使SPR曲线的半波宽度增加,最小反射系数增大,金膜的最优膜厚度也随之改变.其次,通过不同厚度的金膜外吸附纳米金的对比试验,验证了此理论.金膜厚45nm、表面修饰10nm纳米金颗 关键词: 表面等离子体共振 生物传感器 纳米金 金属膜  相似文献   

5.
The acoustic impedances of matching layers and their thicknesses are the most important and influential parameters in the performance of airborne ultrasonic transducers. In this paper, the optimum thicknesses of the matching layers of the narrow band transmitter ultrasonic transducer regarding transmission coefficient were determined by individual calculations using a genetic algorithm. The genetic algorithm was chosen because it is a powerful tool in the optimization domain. The results show that the permitted thickness variation is 0.0005% for one matching layer, and this value can be increased to 0.0031%, which corresponds to the permitted thickness variation for five matching layers. Approximately 55% enhancement in the transmission coefficient is theoretically possible, and 42% enhancement was observed experimentally when the genetic algorithm was applied to calculate the matching layer thicknesses in place of the quarter wavelength equation that is conventionally used for the determination of layer thickness. To verify our approach, the effect of the thickness variation on the transmission coefficient has been investigated experimentally for three, four and five matching layers. The experimental results displayed good agreement with the theoretical predictions.  相似文献   

6.
A mathematical model is presented for determining the oblique incidence of an acoustic wave at both a boundary and layer of a gas–drop mixture or a bubbly liquid of finite thickness. The basic wave reflection and transmission patterns are established for the incidence of a low-frequency acoustic wave at an interface between a pure gas and a gas–drop mixture, as well as between a pure and bubbly liquid. A range of varying volume fractions for a drop is determined, for which the zero value of the reflection coefficient is possible for low frequencies at oblique incidence. It is shown that the reflection coefficient will never be zero at angles of incidence above 24.5° from a gas–drop mixture at a pure gas boundary; however, when a wave is incident from a pure gas at a gas–drop mixture boundary, a zero reflection coefficient is possible for nonzero angles of incidence and the volume fraction of inclusions. The results of calculating reflection of an acoustic wave from a two-phase layer of a medium with a finite thickness are presented. It is established that the minimum reflection coefficient is possible depending on the perturbation frequency for a certain range of angles of incidence for the boundary or the layer of the gas–drop mixture, which is governed mainly by difference in densities between it and the pure gas.  相似文献   

7.
Opieliński KJ  Gudra T 《Ultrasonics》2002,40(1-8):465-469
The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. This problem is of particular importance in the case of ultrasonic transducers working at a frequency above 1 MHz. Because the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realised and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness enabling a compensation of non-ideal real values by changing their thickness was computer analysed. The result of this analysis is the conclusion that from the technological point of view a layer with defined thickness is easier and faster to produce than elaboration of a new material with required acoustic parameter.  相似文献   

8.
许龙  范秀梅 《应用声学》2021,40(6):878-888
提出了一种阶梯圆环径向振动压电超声换能器,根据力电类比原理建立了阶梯圆环及阶梯圆环换能器的径向振动等效电路,推导了阶梯圆环的径向共振频率方程和位移放大系数,在此基础上进一步推导了换能器的径向共振和反共振频率方程。通过理论推导和有限元仿真模拟分析了阶梯圆环压电超声换能器的径向振动性能。结果表明,增大阶梯圆环中内外环的径向厚度之比K1或减小轴向厚度之比K2,阶梯圆环的一阶径向共振频率减小,二阶径向共振频率增大;在二阶径向共振模式下,K1、K2值在一定范围内阶梯圆环可实现由内向外的径向位移振幅放大;随着压电陶瓷圆环的内半径增大,阶梯圆环压电超声换能器的一阶、二阶径向共振和反共振频率减小,二阶径向共振下的有效机电转换系数趋于零;增大阶梯圆环内环的外半径,换能器的一阶径向共振和反共振频率减小,二阶径向共振和反共振频率先增大后减小,理论推导与仿真模拟结果符合良好。本文研究结果为阶梯圆环压电超声换能器的工程应用提供理论参考。  相似文献   

9.
We present an ultrasonic method for determining the thickness of a composite consisting of a soft thin film attached to a hard plate substrate, by resonance spectra in the low frequency region, The interrogating waves can be incident only to the two-layered composite from the substrate side. The reflection spectra are obtained by FFT analysis of the compressive pulsed echoes from the composite, and the thicknesses of the film and the substrate are simultaneously inversed by the simulated annealing method from the resonant frequencies knowing other acoustical parameters in prior. The sensitivity of the method to individual thickness, its convergence and stability against experimental noises are studied, Experiment with interrogating wavelength 4 times larger than the film thickness in a sample of a polymer film (0.054mm) on an aluminium plate (6.24mm) verifies the validity of the method. The average relative errors in the measurement of the thicknesses of the film and the substrate are found to be -4.1% and -0.62%, respectively.  相似文献   

10.
The reflection of elastic wave from thin bed in porous media is important for oil and gas reservoir seismic exploration.The equations for calculating frequency-dependent reflection amplitude versus incident angle(FDAVA) from thin bed in porous media are obtained based on porous media theory. Some conclusions are obtained from numerical analysis, specifically, slow compression wave may be ignored when considering boundary conditions in most situations; the dispersion of reflection from thin bed is much higher than that from thick layer and is periodic in frequency domain, which is affected by the thickness of thin bed, velocity, and incident angle; the reflection amplitude envelope in frequency domain decays exponentially, which is affected by the thickness of thin bed, attenuation, and incident angle; the reflection amplitude increases with thickness of thin bed increasing, and then it decreases when the thickness reaches to a quarter of wavelength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号