首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
《Composite Interfaces》2013,20(5):433-444
Interfacial degradation behavior of E-glass cloth reinforced vinyl ester resin under acidic conditions has been investigated. Specimens with different surface treatment conditions were prepared. Mode I fracture toughness tests were performed using DCB specimen, and the effect of surface treatment condition and immersion time on the crack propagation behavior is discussed. The crack propagation behavior changes as a function of the condition of the silane coupling agent and the immersion time due to the degradation of the interphase. A technique is proposed to evaluate the interfacial property. The change of fracture toughness of interphase and resin as a function of immersion time is studied by the crack propagation behavior and the fracture toughness of interphase and resin evaluated by this technique. The fracture toughness of interphase decreases rapidly with immersion in acidic solution.  相似文献   

2.
The reaction process and the reaction behavior of each component in the Bi-Sr-Ca-Cu-O system are presented in this paper. It reveals that the reaction is carried out in three different stages: forming of an insulating interphase at 680°C–790°C, forming of the 2212 superconducting phase at 790°C–860°C and forming often semiconducting phases in the presence of the liquid phase at 860°C–970°C. It is also confirmed that the 2212 superconducting phase (T c=85 K) is formed by the reaction of a trinary interphase together with CuO, SrO and CaO. A new two-step method is presented to prepare the 2212 superconducting phase by a presynthesized interphase.  相似文献   

3.
The structure of an interphase boundary is studied theoretically. The external magnetic field normal to the Cu-O layers at which an interphase boundary is formed in the La2CuO4-type four-sublattice antiferromagnet is determined. The effect of interplanar interactions on the structure of the interphase boundary is analyzed. The dependence of the stationary dynamics of this boundary on the external magnetic field is investigated.  相似文献   

4.
《Composite Interfaces》2013,20(6):515-546
In this paper, a brief review of the fiber-matrix interphase/interface region is given for carbon- and glass-fiber composites. The substructure of the interphase/interface region is discussed in terms of three interphases: (a) the fiber interphase (FI), (b) the sizing interphase (SI), and (c) the matrix interphase (MI), and two interface regions: (a) the FI-SI interface and (b) the SI-MI interface. These substructures are a synthesis of the ideas advanced by Ishida and Koenig and Drzal. The schematic model of interphase deformation behavior originally given by Bascom is reconstructed to include research results from the above researchers. To systematically probe adhesion at the SI-MI interface, functionalized self-assembled monolayers (SAMs) using bonding and non-bonding C11- type trichlorosilanes are prepared using the research of Menzel and Heise, and that of Cave and Kinloch as a guide. Results from this research are compared with short chain bonding and nonbonding silanes prepared by aqueous and non-aqueous deposition processes. The data were interpreted using the mechanisms proposed by Sharpe, Ishida and Koenig, and Drzal and the mathematical equation proposed by Nardin and Ward. For the non-bonding short-chain silane deposited by aqueous deposition, 90% of the adhesion was found to be due to mechanical interlocking, with the remaining adhesion due to physicochemical interactions. For the bonding short-chain silane deposited by aqueous deposition, the interface strength relative to the non-bonding short-chain silane increased by 31%. However the interfacial shear strength (IFSS) of this system was approximately 40% lower than the comparable bonding SAM interface. This difference was interpreted in terms of the propensity of the C3-alkylamine to form cyclic ring structures in the MI region as described by Ishida, Koenig, et al. The SAM data also indicates that 70-85% of the maximum IFSS is obtained with 25-50% of the surface covered with functional groups. This suggests that steric hindrance, due to the size of the DGEBA molecules, restricts access to the functional groups on the surface. Therefore, only 35% of the surface functional groups are accessible for bonding in the DGEBA/m-PDA epoxy resin system.  相似文献   

5.
The experimental findings on the DC and AC breakdown strength of polyethylene/silica nanocomposites are reported and correlated with simulation results on the electric field distribution of possible nanocomposite models. Specifically, the effects of interphase permittivity and interparticle distances on the electric field intensity and the breakdown strength are discussed with the aid of the Finite Element Method Magnetics (FEMM) 4.2 software. The results showed that the presence of the interphase, when assigned a unique interphase permittivity value, led to variations in electric field distributions. The electric field also changed as adjacent nanoparticles separated from each other with different interparticle distances.  相似文献   

6.
The perturbation-variational theory of Tarazona and Navascués is extended to analyse the effect of the presence of an electric field in the interphase. Molecular orientation in the interphase of polar fluids is found at first order. Different electrostatic surface properties have been analysed, including the surface polarizability and surface susceptibility. Numerical results for carbon monoxide are presented.  相似文献   

7.
The free vibration analysis of a carbon nanotube (CNT) embedded in a volume element is performed using 3D finite element (FE) and analytical models. Three approaches consist of molecular and continuum mechanics FE methods and continuum analytical method are employed to simulate the CNT, interphase region and surrounding matrix. The bonding between CNT and polymer is treated as non-perfect bonding using van der Waals and triple phase material interaction in first and second approaches. In analytical approach a perfect bonding is assumed between nanotube and matrix. First, natural frequencies of CNT under different boundary conditions and aspect ratios are obtained by three approaches and the results are compared with published data. The results show the frequency response variations of CNT in GHz to THz range. Subsequently, vibration behaviors of CNT/polymer are evaluated and the results revealed the importance of interphase region role in the performance of nanocomposites. The results also showed the convergence of the natural frequencies for 1–2.5% of CNT volume in high aspect ratios using three methods, so that the interphase effects is negligible. In addition, it is observed that the molecular method due to interphase role has proper performance in vibration behavior investigation of volume elements.  相似文献   

8.
Characterization of the size and mechanical properties of interphases is essential when designing multicomponent materials. When nanoindentation is used to investigate the size and mechanical properties of an interphase, a common challenge is that the indenter or the stress zone formed around it are often restricted by the reinforcement, making it difficult to distinguish the mechanical property variations caused by the interphase itself from those caused by the boundary effect. In this work, a testing system was developed that allows determining the indent affected zone and accounting for it in the interphase measurements of an epoxy/Cu system. Using finite element analysis, we confirmed the validity of the proposed system. Nanoindentation was used to investigate the interphase between copper and two different epoxy systems; amine-cured and anhydride-cured. Nanoindentation results showed that a copper layer that is only 10 nm thick still exhibits a constriction effect on the indentations in its vicinity. The amine-cured epoxy did not show any sign of interphase existence using the introduced method. However, a soft interphase with a thickness of ~1.7 μm was measured on the anhydride-cured epoxy. Furthermore, we show that the proposed system can be used to determine the interphase thickness as well as its relative mechanical properties regardless of the indentation depth. This system can be further used for investigating other polymer/metal interphases to better understand the factors influencing them, thus helping engineer the interphase size and properties to enhance composite performance.  相似文献   

9.
表面增强拉曼散射光谱的应用进展   总被引:12,自引:6,他引:6  
表面增强拉曼光谱是一种非常有效的探测界面特性和分子间相互作用、表征表面分子吸附行为和分子结构的工具。已成为灵敏度最高的研究界面效应的技术之一,最大范围地应用于研究吸附分子在表面的取向及吸附行为、吸附界面表面状态、生物大分子的界面取向及构型、构象和结构分析;SERS技术也逐渐成为表面科学和电化学领域有力的研究手段,并已在痕量分析乃至单分子检测、化学及工业、环境科学、生物医学体系、纳米材料以及传感器等方面的研究中得到了广泛应用,甚至出现了拉曼技术与其他技术的联用。文章综述了近几年来表面增强拉曼散射作为一种光谱技术在这些应用领域的研究进展以及潜在应用价值;并简单介绍了作者所在实验室的相关工作,特别是富勒烯和碳纳米管材料等领域的一些探讨与研究。  相似文献   

10.
Polymeric self-consistent field theory is used to investigate microstructures and interphase properties of diblock copolymers grafted onto solid surfaces in a homopolymer melt. The calculations show that the grafted diblock copolymers can self-assemble into hemispherical microstructures at low grafting densities of the diblock copolymers. The morphology transforms into hemicylinder-like and sandwich-like lamellar microstructures with an increase in the chain-grafting density. The effective thickness of the grafted block layer and the interphase width between the homopolymer melt and the grafted copolymers strongly depend on the physicochemical parameters of the system, such as the composition of the grafted copolymer, the chemical incompatibility between the different components, the length ratio of grafted copolymer to homopolymer, and the grafting density of the diblock copolymers. In addition, the above computational results of microphase-separated structures and interphase properties are qualitatively compared with our previous experimental observations. The comparison indicates that our theoretical results not only reproduce the general feature of the experimental observations, but also elucidate the internal structural information and complement the findings in the region of high grafting densities of diblock copolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号