首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hole-net structure silicon is fabricated by laser irradiation and annealing,on which a photoluminescence (PL) band in a the region of 650–750 nm is pinned and its intensity increases obviously after oxidation.It is found that the PL intensity changes with both laser irradiation time and annealing time.Calculations show that some localized states appear in the band gap of the smaller nanocrystal when Si=O bonds or Si–O–Si bonds are passivated on the surface.It is discovered that the density and the number of Si=O bonds or Si–O–Si bonds related to both the irradiation time and the annealing time obviously affect the generation of the localized gap states of hole-net silicon,by which the production of stimulated emission through controlling oxidation time can be explained.  相似文献   

2.
A curviform surface breaks the symmetrical shape of silicon quantum dots on which some bonds can produce localized electronic states in the bandgap. The calculation results show that the bonding energy and electronic states of silicon quantum dots are different on various curved surfaces, for example, a Si-O-Si bridge bond on curved surface provides localized levels in bandgap and its bonding energy is shallower than that on the facet. The red-shifting ofthe photoluminescence spectrum on smaller silicon quantum dots can be explained by the curved surface effect. Experiments demonstrate that silicon quantum dots are activated for emission due to the localized levels provided by the curved surface effect.  相似文献   

3.
黄伟其  陈汉琼  苏琴  刘世荣  秦朝建 《中国物理 B》2012,21(6):64209-064209
A new nanolaser concept using silicon quantum dots (QDs) is proposed. The conduction band opened by the quantum confinement effect gives the pumping levels. Localized states in the gap due to some surface bonds on Si QDs can be formed for the activation of emission. An inversion of population can be generated between the localized states and the valence band in a QD fabricated by using a nanosecond pulse laser. Coupling between the active centres formed by localized states and the defect states of the two-dimensional (2D) photonic crystal can be used to select the model in the nanolaser.  相似文献   

4.
黄伟其  王海旭  金峰  秦朝建 《中国物理 B》2008,17(10):3753-3758
The photoluminescence (PL) of nanocrystal present in porous silicon shifts from the near infrared to the ultraviolet depending on the size when the surface is passivated with Si-H bonds. After oxidation, the centre wavelength of PL band is pinned in a region of 700-750 nm and its intensity increases obviously. Calculation shows that trap electronic states appear in the band gap of a smaller nanocrystal when Si = O bonds or Si-O-Si bonds are formed. The changes in PL intensity and wavelength can be explained by both quantum confinement and trap states in an oxidation layer of nanocrystal. In the theoretical model, the most important factor in the enhancement and the pinning effects of PL emission is the relative position between the level of the trap states and the level of the photoexcitation in the silicon nanocrystal.  相似文献   

5.
We calculate the density of states, the squared optical matrix element along the x direction, and the band gap of Si nanosphere with radius r smaller than 1.2 nm using the method of linear combination of atomic orbitals. It is shown that the quantum confinement effect of Si nanocrystals exists obviously, fulfilling E = 1.92 0.23/r^1.8,but the band gap exhibits fluctuation with nanocrystal size, which is caused by the dangling bonds of atoms ino uter layers. The obtained result indicates that the surface chemical bonds have larger influence on the energy band structure of Si nanosphere when its radius is smaller than 1.2nm.  相似文献   

6.
The emission of silicon quantum dots is weak when their surface is passivated well. Oxygen or nitrogen on the surface of silicon quantum dots can break the passivation to form localized electronic states in the band gap to generate active centers where stronger emission occurs. From this point of view, we can build up radiative matter for emission. Emissions of various wavelengths can be obtained by controlling the surface bonds of silicon quantum dots. Our experimental results demonstrate that annealing is important in the treatment of the activation, and stimulated emissions at about 600 and 700 nm take place on active silicon quantum dots.  相似文献   

7.
We report fabrication of low-dimensional structures in air by a pulsed laser on SiGe alloy samples in which different oxide structures are formed by laser irradiation and annealing treatment. The micro-structures on SiGe are more complex than those on Si. A series of photolumineseence (PL) emission is observed due to various trap states at the SiGe-SiO2 interface formed under different preparing conditions. The peak centre of PL emission exhibits red=shift from Si to SiGe because of narrower gap. A model for explaining the PL emission is proposed in which the trap states of the interface between some oxide and SiGe play an important role.  相似文献   

8.
To more in depth understand the doping effects of oxygen on Si Ge alloys, both the micro-structure and properties of O-doped Si Ge(including: bulk,(001) surface, and(110) surface) are calculated by DFT + U method in the present work.The calculated results are as follows.(i) The(110) surface is the main exposing surface of Si Ge, in which O impurity prefers to occupy the surface vacancy sites.(ii) For O interstitial doping on Si Ge(110) surface, the existences of energy states caused by O doping in the band gap not only enhance the infrared light absorption, but also improve the behaviors of photo-generated carriers.(iii) The finding about decreased surface work function of O-doped Si Ge(110) surface can confirm previous experimental observations.(iv) In all cases, O doing mainly induces the electronic structures near the band gap to vary, but is not directly involved in these variations. Therefore, these findings in the present work not only can provide further explanation and analysis for the corresponding underlying mechanism for some of the experimental findings reported in the literature, but also conduce to the development of μc-Si Ge-based solar cells in the future.  相似文献   

9.
Enhanced photoluminescence (PL) at room temperature from thermally annealed a-Si:H/SiO2 multilayers is observed through the step-by-step thermal post-treatment. The correlation between the PL and the crystallization process is studied using temperature-dependent PL, Raman, cross section high-resolution transmission electron microscopy (XHRTEM) and x-ray diffraction (XRD) techniques. An intensified PL band around 820 nm is discovered from the sample annealed near the crystallization onset temperature, which is composed of two peaks centred at 773 nm and 863 nm, respectively. It is found that the PL band centred at 863 nm is related to the pseudo nanocrystal (p-nc-Si) silicon, and the PL band centred at 773 nm is attributed to Si = O bonds stabilized in the p-nc-Si surface.  相似文献   

10.
《中国物理 B》2021,30(7):77102-077102
Co_3Sn_2S_2 has attracted a lot of attention for its multiple novel physical properties, including topological nontrivial surface states, anomalous Hall effect, and anomalous Nernst effect. Vacancies, which play important roles in functional materials, have attracted increasing research attention. In this paper, by using density functional theory calculations, we first obtain band structures and magnetic moments of Co_3Sn_2S_2 with exchange–correlation functionals at different levels. It is found that the generalized gradient approximation gives the positions of Weyl points consistent with experiments in bulk Co_3Sn_2S_2. We then investigate the electronic structures of defects on surfaces with S and Sn terminations which have been observed in experiments. The results show that the single sulfur vacancy on the S-terminated surface introduces localized bond states inside the bandgap near the Fermi level. For di-and tri-sulfur vacancies, the localized defect states hybridize with neighboring ones, forming bonding states as well as anti-bonding states. The Sn vacancy on the Sn-terminated surface also introduces localized bond states, which are merged with the valence bands. These results provide a reference for future experimental investigations of vacancies in Co_3Sn_2S_2.  相似文献   

11.
The localized surface plasmon resonance properties of Al and Alcore/Al2O3 shell nanosphere dimers with Al and Al core nanosphere radii of 20 nm and Al2O3 shell of 2 nm in the deep-ultraviolet region have been studied using the finite difference time domain method. The extinction spectra and the electric field distribution profiles of the two dimers for various gap distances between two individual nanospheres are compared with those of the corresponding monomers to reveal the extent of plasmon coupling. It is found that with the interparticle distance decreasing, a strong plasmon coupling between two Al or Alcore/Al2O3 shell nanospheres is observed accompanied by a significant red shift in the extinction spectra at the parallel polarization direction of the incident light related to the dimer axis, while for the case of the perpendicular polarization direction, a weak plasmon coupling arises characterized by a slight blue shift in the extinction spectra. The electric field distribution profiles show that benefiting from the dielectric Al2O3 shell, the gap distance of Alcore/Al2O3 shell nanosphere dimers can be tailored to < 1 nm scale and results in a very high electric field enhancement. The estimated surface-enhanced Raman scattering enhancement factors suggests that the Alcore/Al2O3 shell nanosphere dimers with the gap of < 1 nm gave rise to an enhancement as high as 8.1 × 107 for interparticle gap = 0.5 nm. Our studies reveal that the Alcore/Al2O3 shell nanosphere dimers may be promising substrates for surface-enhanced spectroscopy in the deep-ultraviolet region.  相似文献   

12.
With the help of an objective reduction approach (ORA), abundant exact solutions of (2+1)-dimensional higher-order Boussinesq system (including some hyperboloid function solutions, trigonometric function solutions, and a rational function solution) are obtained. It is shown that some novel soliton structures, like single linearity soliton structure, breath soliton structure, single linearity y-periodic solitary wave structure, libration dromion structure, and kink-like multisoliton structure with actual physical meaning exist in the (2+1)-dimensional higher-order Boussinesq system.  相似文献   

13.
Dirac particle penetration is studied theoretically with Dirac equation in one-dimensional systems. We investigate a one-dimensional system with N barriers where both barrier height and well width are constants randomly distributed in certain range. The one-parameter scaling theory for nonrelatiyistic particles is still valid for massive Dirac particles. In the same disorder sample, we find that the localization length of relativistic particles is always larger than that of nonrelativistic particles and the transmission coefficient related to incident particle in both cases fits the form T~ exp(-αL). More interesting, massless relativistic particles are entirely delocalized no matter how big the energy of incident particles is.  相似文献   

14.
With the help of the symbolic computation system Maple, the Riccati equation mapping approach and a linear variable separation approach, a new family of complex solutions for the (2+ 1)-dimensional Boiti-Leon-Pempinelli system (BLP) is derived. Based on the derived solitary wave solution, some novel complex wave localized excitations are obtained.  相似文献   

15.
In the recent experiment on the HL-2A tokamak,two types of improved confinement regimes have been achieved in different configurations.One is the improved confinement regime in limiter configuration during electron cyclotron resonant heating (ECRH),characterized by a sharp decrease in H α emission accompanied by an increase in the total radiation of plasma,the line averaged electron density and the stored energy of plasma.The other is high confinement regime (H-mode) in divertor configuration during a combination of ECRH and Neutral beam injection (NBI) heating,characterized with edge localized modes (ELMs) besides the features mentioned above.The ELMs are found to be localized on the plasma edge (r/a ≥ 0.8),causing average losses of particles and stored energy in the ranges of about 1-3% and 3-5% respectively during a single ELM event.So far,the ELMs observed in the HL-2A are type III ELMs with low amplitude and high repetition frequency in a range from 200 Hz to 350 Hz.An investigation of the radiated power density profiles shows that radiative cooling effect plays a significant role in the transition back to the L-mode and the triggering of ELM events.  相似文献   

16.
Recently, there was a hot controversy about the concept of localized orbitals, which was triggered by Grushow's work titled "Is it time to retire the hybrid atomic orbital?" [J. Chem. Educ. 88, 860 (2011)]. To clarify the issue, we assess the delocalized and localized molecular orbitals from an experimental view using electron momentum spectroscopy. The delocalized and localized molecular orbitals based on various theoretical models for CH4, NH3, and H20 are compared with the experimental momentum distributions. Our results show that the delocalized molecular orbitals rather than the localized ones can give a direct interpretation of the experimental (e, 2e) results.  相似文献   

17.
马红彩  葛东杰  于耀东 《中国物理 B》2008,17(12):4344-4353
Based on the B/icklund method and the multilinear variable separation approach (MLVSA), this paper finds a general solution including two arbitrary functions for the (2+1)-dimensional Burgers equations. Then a class of new doubly periodic wave solutions for (2+l)-dimensional Burgers equations is obtained by introducing appropriate Jacobi elliptic functions, Weierstrass elliptic functions and their combination in the general solutions (which contains two arbitrary functions). Two types of limit cases are considered. Firstly, taking one of the moduli to be unity and the other zero, it obtains particular wave (called semi-localized) patterns, which is periodic in one direction, but localized in the other direction. Secondly, if both moduli are tending to 1 as a limit, it derives some novel localized excitations (two-dromion solution).  相似文献   

18.
By means of an extended mapping approach and a linear variable separation approach, a new family of exact solutions of the (3+1)-dimensional Jimbo-Miwa system is derived. Based on the derived solitary wave solution, we obtain some special localized excitations and study the interactions between two solitary waves of the system.  相似文献   

19.
With an extended mapping approach and a linear variable separation method, new families of variable separation solutions (including solitary wave solutions, periodic wave solutions, and rational function solutions) with arbitrary functions for (3+1)-dimensionai Burgers system is derived. Based on the derived excitations, we obtain some novel localized coherent structures and study the interactions between solitons.  相似文献   

20.
纳米硅结构使能带的带隙展宽,并形成准直接能带带隙结构.弯曲表面上的某些键合可以在带隙中产生局域电子态,计算表明:纳米硅弯曲表面上的Si-N,Si=O和Si-O-Si键合能够分别在带隙中2.02 eV,1.78 eV和2.03 eV附近形成局域态子带,对应了实验光致荧光谱(PL)中605 nm处的LN线、693 nm处的LO1线和604 nm处的LO2线特征发光.特别是,Si-Yb键合在纳米硅弯曲表面上可以将发光波长调控到光通信窗口,在1310 nm到1600 nm范围形成LYb线特征发光.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号