首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
探针诱导表面等离子体共振纳米光刻系统   总被引:3,自引:2,他引:1  
提出了一种在原子力显微镜(AFM)基础上设计的探针诱导表面等离子体共振纳米光刻(PSPRN)系统.此系统不但实现了探针的精确控制,而且由于系统本身具有AFM的全部功能,因此可以实时检测样品表面的形貌以及光刻效果.系统采用改进的Kretschmann型共振耦合器件,在棱镜和样品基板之间注入匹配折射率油,使样品更方便更换;利用声光调制器与AFM配合实现了等离子体激发光照射时间的精确控制.通过初步实验,在银(Ag)膜表面获得了直径100 nm左右的光刻点,验证了PSPRN的可行性.研究了光照时间、激光功率、激光入射角、材料厚度等因素对光刻点大小、深度的影响,为实现更小的光刻点提供了参考.  相似文献   

2.
实验研究了激光诱导化学沉积法(LICDM)中诱导激光功率及诱导时间对锥形光纤表面增强拉曼散射(SERS)探针性能的影响。通过优化激光诱导功率为90 m W、诱导时间为50 min,制备出高灵敏度的锥形光纤SERS探针,结合便携式拉曼光谱仪实现了1.0×10-7mol/L甲基对硫磷(MP)的检测;该方法制备的探针对MP的SERS光谱检测具有良好的重复性。这种高灵敏度、可重复性好的锥形光纤SERS探针在农残现场检测、定量分析等方面具有潜在的应用前景。  相似文献   

3.
研究了激光诱导沉积制备光纤表面增强拉曼散射(SERS)探针,并对探针的SERS性能进行检测。探讨光纤探针制备过程中金纳米棒溶液的浓度对探针灵敏度的影响。结果表明,将不同浓度的金纳米棒溶液进行激光诱导,在光纤端面会形成金纳米棒团簇和分散两种纳米结构。金纳米棒溶液的浓度、激光功率、诱导时间等因素都会对诱导沉积图案产生影响。实验利用功率为5 mW的激光进行诱导,在1.5×10-9,1.0×10-9和7.5×10-10 mol·L-1的金纳米棒溶液中,经5 min沉积,制备出不同图案的光纤SERS探针。采用晶种法合成金纳米棒,用透射电子显微镜(TEM)观察金纳米棒形貌,并根据TEM图像分析计算了合成金纳米棒的长径比约为3.8。用扫描电子显微镜(SEM)观察金纳米棒的形貌以及激光诱导沉积后的纤维修饰端形貌,7.5×10-10 mol·L-1的金纳米棒溶液进行激光诱导,金纳米棒在光纤端面分布较为分散,而1.5×10-9和1.0×10-9 mol·L-1的金纳米棒溶液进行激光诱导,光纤端面都有大量的金纳米棒聚集成团。以4-氨基苯硫酚(4-ATP)为样品分子,通过拉曼光谱对光纤探针的SERS性能进行检测;为了方便比较,选取了拉曼频移1 079.972 cm-1处的拉曼强度作图,结果表明,金纳米棒浓度为7.5×10-10 mol·L-1时,经激光诱导制备出的光纤探针性能较好。采用时域有限差分法(FDTD)模拟形成的图案的热点分布,进而解释了金纳米棒浓度为7.5×10-10 mol·L-1时制备的光纤探针性能较好的原因。为了检验光纤探针的重复性,将测试SERS光谱后的光纤浸入无水乙醇中24小时,使4-ATP充分溶解在酒精中,15天后,再次检测光纤探针的SERS检测性能,得到与之前检测同样的光谱图,证明得到的光纤SERS探针具有较强的可重复利用性。激光诱导制备光纤探针具有操作简单、成本低廉、探针制备时间短等优点,能够实现高灵敏度光纤SERS探针的重复、批量制备。  相似文献   

4.
表面等离子体共振成像生物芯片检测系统   总被引:2,自引:1,他引:2  
李莹  钟金钢  张永林  顾大勇  张雅鸥 《光子学报》2007,36(12):2290-2293
根据表面等离子体共振(Surface Plasmon Resonance, SPR)原理,提出基于表面等离子体共振成像(Surface Plasmon Resonance imaging, SPRI)的生物芯片检测系统构建方法.介绍了SPRI生物芯片检测系统的原理、自行组建的SPRI生物芯片检测系统的结构.采用Kretschmann型棱镜耦合结构激励SPR,偏振的平行光经棱镜投射到生物芯片上,发生表面等离子体共振,由CCD摄像机采集反射光芯片图像.以巯基修饰淋病奈瑟氏菌探针为例验证该系统,利用自组装单分子层技术(Self-Assembled Monolayer,SAM)固定探针.应用该检测系统采集了探针共振、非探针处共振、探针和非探针处都不共振时的生物芯片图像.  相似文献   

5.
表面增强拉曼散射(SERS)技术可有效增强样品分子的拉曼信号,对生物分子检测具有较高的灵敏性,因此在生化方面有着许多潜在的应用.而将空芯微结构光纤与SERS技术相结合不仅能够远端实时、分布式地检测,同时还可以增加光场与待测物的有效作用面积,减少传统光纤探针无法避免的石英背景信号等问题.本文基于空芯微结构光纤进行SERS探针的制备及性能测试研究,利用真空物理溅射法在空芯光纤内镀纳米Ag膜,从而制备成SERS探针,通过实验检测不同浓度的罗丹明6G (R6G)酒精溶液的拉曼信号.结果表明,在探针的近端正面成功探测到了浓度低至10~(-9)mol/L的R6G拉曼信号,在探针的远端反面探测到的浓度可小于10~(-6)mol/L.该实验结果为研究高灵敏度的SERS探针提供了一种新的手段.  相似文献   

6.
干昌明 《应用声学》1986,5(3):39-41
本文介绍了一种激光探针(刀刃技术)测SAW速度的方法.用这种方法测量了s切一x传播石英晶片的自由表面SAA速度及金属化表面SAw速度。速度值的准确度优于1‰,精密度约为0.4‰。  相似文献   

7.
用于激光等离子体诊断实验的二 倍频探针光系统   总被引:3,自引:0,他引:3  
为了满足基准物理实验的要求 ,准确地探测出靶面的等离子体的电子温度、密度、电子离子漂移速度等参数 ,在星光 激光装置上发展了一束二倍频激光作为探针光。通过模拟实验已经证实了该探针光的二倍频总能量大于 5J,焦斑尺寸小于 1 0 0 μm,可以满足激光与等离子体相互作用的高功率要求。目前 ,该探针光系统已经用于用于激光等离子体诊断实验的常规运行。  相似文献   

8.
提出了一种基于银修饰的微腔型光纤表面增强拉曼散射(SERS)探针,采用湿法检测,将光纤SERS探针直接放入待测溶液中,以罗丹明6G(R6G)溶液为探针分子,对所制备的光纤SERS探针进行远端实验性能研究。利用氢氟酸化学腐蚀的方法制备了一种微腔型光纤结构,通过控制氢氟酸的腐蚀时间得到了一系列不同腐蚀时间、不同微腔长度的光纤结构。实验研究了光纤结构的微腔长度对光纤SERS探针性能的影响,以浓度为10-3 mol·L-1的R6G溶液为探针分子,通过不断地优化纳米银溶胶与R6G溶液的混合顺序及比例,采用裸光纤微腔结构对混合溶液进行拉曼检测,发现当混合溶液的混合顺序及比例为先后混合等体积的纳米银溶胶和R6G溶液时,此时得到的混合溶液的拉曼信号增强性能最佳。利用得到的混合溶液去寻找拉曼信号增强效果最高时光纤微腔结构的结构参数,实验结果表明,在相同的实验条件下,当光纤放入氢氟酸中腐蚀时间为5 min时,此时光纤微腔结构的拉曼信号增强效果最佳。在显微镜下测量的多组腐蚀时间为5 min的光纤,其微腔长度平均约为81 μm。对得到的光纤微腔结构,采用制备过程可控的磁控溅射技术制备了一系列银纳米薄膜/多模光纤(Ag/MMF)的复合材料。当磁控溅射时间为10 min时,获得了光纤SERS探针(Ag/MMF-10)。实验以去离子水配制了不同浓度的R6G溶液,以不同浓度的R6G溶液为探针分子,Ag/MMF-10探针的远端检测限(LOD)低至10-7 mol·L-1。该光纤SERS探针拉曼信号的再现性光谱检测中显示各个特征峰的相对标准偏差(RSD)均小于10%。同时,该光纤SERS探针对浓度为10-6 mol·L-1的R6G溶液的增强因子(AEF)可高达2.64×106。实验结果表明所制备的银修饰的光纤SERS基底具有较高的灵敏度和良好的再现性。因此,该光纤SERS探针在生物医学检测、农残化学分析等痕量检测方面有潜在的应用价值。  相似文献   

9.
微探针是扫描探针显微镜(SPM)的重要组成部件,其共振频率等振动特性直接影响系统的性能。给出了系统微探针共振频率的测试方法,对微探针在压电陶瓷驱动力作用下的受迫振动进行了有限元分析。提出了相位变化0.1°所对应的0.1nm位移分辨率的双频激光外差干涉光学测量系统,对微探针纳米尺度振动特性进行了测试对比实验,并对SPM标定样块进行了比对分析。实验结果验证了双频激光外差干涉测量方法的可行性和其应用价值。  相似文献   

10.
封昭  周骏  陈栋  王少敏  王小军  谢树森 《发光学报》2015,36(9):1064-1070
基于金/银纳米三明治结构的表面增强拉曼散射(SERS)特性, 实现了前列腺特异性抗原(PSA)高灵敏度免疫检测, 检测结果具有特异性。采用化学还原法制备金、银纳米粒子, 用4-巯基苯甲酸(4-MBA)及前列腺特异性抗体(Anti-PSA)链接金、银纳米粒子制备免疫探针, 在硅片表面原位生长金、银纳米粒子并链接Anti-PSA制备得到免疫基底。将免疫探针、免疫基底以及PSA组成三明治结构, 进行基于SERS特性的免疫检测。实验结果表明, 纳米银免疫探针与纳米银免疫基底组成的三明治结构具有最佳的检测效果, PSA的检测灵敏度低至1.8fg/mL(3.490吆-18mol/L), 可应用于前列腺癌症的早期检测与诊断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号