首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 848 毫秒
1.
非平整基底上受热液膜流动稳定性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
刘梅  王松岭  吴正人 《物理学报》2014,63(15):154702-154702
本文研究了二维黏性流体薄膜沿非平整不均匀加热基底流动时非线性表面波的演化及其流动稳定性.利用长波摄动法推导出非平整线性加热基底上非线性表面波的零阶和一阶演化方程,基于所得演化方程,绘制出正弦波纹基底上液膜的表面波形图,并研究液膜流动的线性稳定性,分析了各无量纲参数对液膜线性稳定性的影响.分析结果表明:在正弦波纹基底上,液膜自由表面随同壁面作相同频率的正弦型波动,且液膜厚度沿流动方向逐渐变小;Marangoni数为稳定影响因素,随Marangoni数的增大,液膜稳定区域增大;Peclet数和倾角θ均为不稳定影响因素,随Peclet数和倾角θ的增大,液膜稳定区域减小;在非平整基底的波峰和波谷处,Peclet数、Marangoni数和倾角θ对稳定性的影响趋势一致,但基底波谷处的液膜稳定区域小于波峰处区域,流动更易失稳.  相似文献   

2.
In this paper, theoretical calculations as well as numerical simulations are performed for the time-averaged acoustic force and torque on a rigid cylinder of arbitrary size in a fluid with low viscosity, i.e., the acoustic boundary layer is thin compared to the cylinder radius. An exact analytical solution and its approximation are proposed in the form of an infinite series including Bessel functions. These solutions can be evaluated easily by a mathematical software package such as mathematica and matlab. Three types of incident waves, plane traveling wave, plane standing wave, and dual orthogonal standing waves, are investigated in detail. It is found that for a small particle, the viscous effects for an incident standing wave may be neglected but those for an incident traveling wave are notable. A nonzero viscous torque is experienced by the rigid cylinder when subjected to dual orthogonal standing waves with a phase shift even when the cylinder is located at equilibrium positions without imposed acoustic forces. Furthermore, numerical simulations are carried out based on the FVM algorithm to verify the proposed theoretical formulas. The theoretical results and the numerical ones agree with each other very well in all the cases considered.  相似文献   

3.
Excitation of potential surface waves by a nonrelativistic electron beam traveling in a vacuum space near the boundary of a layered superconductor is studied theoretically. Dispersion relations for surface waves at an arbitrary angle between superconductor layers and interface are obtained. Allowance is made for an arbitrary direction of wave propagation in the interfacial plane. Increments of kinetic and hydrodynamic instabilities are found. It is shown that absolute instability may occur.  相似文献   

4.
We derive constraint-free, coupled wave equations for the propagation of coupled electromagnetic and gravitational waves traveling through a time-dependent inhomogeneous medium. The medium consists of an arbitrary gravitational field, dust, a cold two-fluid plasma, and an arbitrary magnetic field. In this first of two papers we apply a two-timing ansatz to the constraint-free system of wave equations. In the second paper, dispersion relation and transport equations are found by means of a WKB analysis.  相似文献   

5.
Radiophysics and Quantum Electronics - We study the modulation of weakly nonlinear traveling waves in the presence of a damped large-scale mode. The traveling wave is generated by the Marangoni...  相似文献   

6.
In order to investigate further nonlinear asymmetric vibrations of a clamped circular plate under a harmonic excitation, we reexamine a primary resonance, studied by Yeo and Lee [Corrected solvability conditions for non-linear asymmetric vibrations of a circular plate, Journal of Sound and Vibration 257 (2002) 653-665] in which at most three stable steady-state responses (one standing wave and two traveling waves) are observed to exist. Further examination, however, tells that there exist at most five stable steady-state responses: one standing wave and four traveling waves. Two of the traveling waves lose their stability by Hopf bifurcation and have a sequence of period-doubling bifurcations leading to chaos. When the system has five attractors: three equilibrium solutions (one standing wave and two traveling waves) and two chaotic attractors (two modulated traveling waves), the basin boundaries of the attractors on the principal plane are obtained. Also examined is how basin boundaries of the modulated motions (quasi-periodic and chaotic motions) evolve as a system parameter varies. The basin boundaries of the modulated motions turn out to have the fractal nature.  相似文献   

7.
8.
9.
The superheterodyne amplification of sub-millimeter electromagnetic waves in GasAs due to negative differential mobility is analyzed. The nonlinearity arises from the current and the magnetic field of the electromagnetic waves. The case of interaction of two traveling counter propagating electromagnetic waves and the following space charge wave in an n-GaAs film, placed onto i-GaAs substrate, is considered, under a 2D electron gas model. The simulation of this nonlinear interaction shows a certain amplification of the sub-millimeter electromagnetic wave.  相似文献   

10.
陆全康 《物理学报》1981,30(2):266-270
文献[1]由分析色散关系几何性质方法,导出速度分布各向异性的无碰撞等离子体中的电磁波不稳定性的严格和普适判据,但限于沿一个主温度方向传播的波。本文则讨论沿任意方向的波,得出电磁波不稳定性的严格判据。 关键词:  相似文献   

11.
A method has been developed for determining magnetic and electrical characteristics of film nanostructures containing magnetic nanoparticles from dispersion curves of surface spin waves propagating in these nanostructures. The dispersion curves of spin waves are determined by the dynamics of the spin component described by the generalized Landau-Lifshitz equations and an alternating electromagnetic field induced by a spin wave. Since spin waves are very sensitive to inhomogeneity of magnetic parameters, spin disorder, and conductivity of an object near or inside which these waves propagate, they can be used for determining magnetic and electrical characteristics of the objects under investigation. The developed calculation method, which can be employed both in spin-wave spectroscopy and in analysis of dispersion curves obtained by other methods, has been used for determining parameters of heterostructures consisting of a SiO2 film with Co nanoparticles on a GaAs substrate. It has been found from the shape of dispersion curves of the surface spin waves that, in the film near the interface, spins of the nanoparticles are close to a ferromagnetic ordering, whereas near the free surface, the spin orientation of nanoparticles is more chaotic. It has been revealed that a conducting layer is formed in GaAs, and the SiO2(Co) film near the interface has an increased conductivity.  相似文献   

12.
We consider the stability of periodic gravity free-surface water waves traveling downstream at a constant speed over a shear flow of finite depth. In case the free surface is flat, a sharp criterion of linear instability is established for a general class of shear flows with inflection points and the maximal unstable wave number is found. Comparison to the rigid-wall setting testifies that the free surface has a destabilizing effect. For a class of unstable shear flows, the bifurcation of nontrivial periodic traveling waves is demonstrated at all wave numbers. We show the linear instability of small nontrivial waves that appear after bifurcation at an unstable wave number of the background shear flow. The proof uses a new formulation of the linearized water-wave problem and a perturbation argument. An example of the background shear flow of unstable small-amplitude periodic traveling waves is constructed for an arbitrary vorticity strength and for an arbitrary depth, illustrating that vorticity has a subtle influence on the stability of free-surface water waves.  相似文献   

13.
本文对在一条波线上的两个驻波的叠加结果进行了简明扼要的分析,对进一步理解行波和驻波之间的相互关系有积极的意义。  相似文献   

14.
王艳  谢英才  张淑仪  兰晓东 《中国物理 B》2017,26(8):87703-087703
Propagation characteristics of surface acoustic waves(SAWs) in ZnO films/glass substrates are theoretically investigated by the three-dimensional(3D) finite element method. At first, for(11ˉ20) ZnO films/glass substrates, the simulation results confirm that the Rayleigh waves along the [0001] direction and Love waves along the [1ˉ100] direction are successfully excited in the multilayered structures. Next, the crystal orientations of the ZnO films are rotated, and the influences of ZnO films with different crystal orientations on SAW characterizations, including the phase velocity, electromechanical coupling coefficient, and temperature coefficient of frequency, are investigated. The results show that at appropriate h/λ, Rayleigh wave has a maximum k~2 of 2.4% in(90°, 56.5°, 0°) ZnO film/glass substrate structure; Love wave has a maximum k~2 of 3.81% in(56°, 90°, 0°) ZnO film/glass substrate structure. Meantime, for Rayleigh wave and Love wave devices, zero temperature coefficient of frequency(TCF) can be achieved at appropriate ratio of film thickness to SAW wavelength. These results show that SAW devices with higher k~2 or lower TCF can be fabricated by flexibly selecting the crystal orientations of ZnO films on glass substrates.  相似文献   

15.
Plane wave propagation in chiral plasma and chiral ferrite media is studied in kDB coordinate system. General wave equations and characteristic equations of plane waves propagating along an arbitrary direction in chiral plasma and in chiral ferrites are derived in simple formulations respectively. Four wavenumbers and their corresponding dispersion characteristics are resulted for propagation both along and normal to the biasing magnetic field. When plane wave with negative helicity propagates along the biasing magnetic field in chiral ferrites, backward waves emerge. However backward waves occur with both positive and negative helicities when propagating along the biasing magnetic field in chiral plasma.  相似文献   

16.
A slow wave structure named Π — line is analysed in this paper. This circuit propagates slow waves in symmetrical and antisymmetrical mode. The dispersion relations of both symmetrical and antisymmetrical modes are derived here, by means of the field matching method. Numerical results are also given in this paper. The Π — line slow wave structure is of large diameter, and its radial supported stubs provide good heat conduction paths. These properties make this circuit well suited for use in high power, millimeter wave traveling wave tubes.  相似文献   

17.
Lightly damped vibrating structures normally exhibit vibration patterns that are a combination of standing waves, i.e. mode shapes. Traveling waves, on the other hand, occur only under special circumstances. In this work, the theoretical conditions under which traveling waves prevail in finite structure are investigated. These conditions are highly sensitive to the geometrical and material parameters of the structure and in particular the vibration pattern is sensitive to the boundary conditions. There are several combinations under which traveling waves cannot be formed and these ill-posed cases are analyzed in some detail. To overcome the unavoidable uncertainties in a model, a tuning process based on identification and optimization of the excitation is suggested. The identification process uses a parametric algorithm to estimate the wavenumbers of the measured vibrations. Then, the waves are decomposed into traveling and standing parts and the external excitation is tuned until a pure traveling wave is formed.  相似文献   

18.
Shock waves were explored in the thermoacoustic spontaneous gas oscillations occurring in a gas column with a steep temperature gradient. The results show that a periodic shock occurs in the traveling wave mode in a looped tube but not in the standing wave mode in a resonator. Measurements of the harmonic components of the acoustic intensity reveal a clear difference between them. The temperature gradient acts as an acoustic energy source for the harmonic components of the shock wave in the traveling wave mode but as an acoustic energy sink of the second harmonic in the standing wave mode.  相似文献   

19.
It was shown that traveling waves may coexist with standing waves in a planar infinitely long channel filled by ideal liquid with a free surface. The standing waves are localized near a dynamic inclusion—a massive die on an elastic base. The amplitude of the traveling waves may be turned to zero by appropriately selecting the vibration frequency of the die. The standing waves arise because the vibration eigenfrequencies have a mixed spectrum; that is, the discrete and continuous spectra superpose. Nonlinear effects were observed for the first time when standing waves form in shallow water. In particular, a relationship between the die weight necessary to excite trapped modes, die dimensions, and vibration frequency was derived. It was shown that the nonlinear effects cause double-frequency traveling waves with amplitudes of the next order of smallness. These traveling waves vanish if the die geometry is properly chosen, as for the waves of the zeroth order.  相似文献   

20.
Shuvalov AL  Every AG 《Ultrasonics》2002,40(1-8):939-942
Basic patterns of the velocity versus wavenumber dispersion of the surface waves in solids coated by a relatively light or dense, "slow" or "fast" layer are discussed in the general case of an arbitrary anisotropy of substrate and coating materials. The onset of the subsonic wave branch, characterized by either a speeding or a slowing trend, is examined. Competitive tendencies, which pertain to the low-frequency dispersion in the case of dense "fast" layer, are revealed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号