首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dense nanocrystalline BaTiO3 ceramics with uniform grain sizes of 30 nm was obtained by pressure assisted sintering. The phase transitions were investigated by Raman scattering at temperatures ranging from −190 to 200 °C. With increasing temperature, similar to 3 μm BaTiO3 normal ceramics, the successive phase transitions from rhombohedral to orthorhombic, orthorhombic to tetragonal, tetragonal to cubic were also observed in 30 nm BaTiO3 ceramics. Especially, the coexistence of ferroelectric tetragonal and orthorhombic phases was found at room temperature. The ferroelectric behavior was further characterized by P-E hysteresis loop. The experimental results indicate that the critical grain size of the disappearance of ferroelectricity in nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering is below 30 nm.  相似文献   

2.
将10 nm钛酸钡粉在6 GPa超高压条件下进行烧结,得到了晶粒大小约为30 nm的钛酸钡陶瓷.用扫描电子显微镜和原子力显微镜观测了样品的微观结构.研究表明,由于超高压能够压碎纳米粉体中的团聚体,而且能增加烧结的驱动力,降低成核的势垒,从而使成核速率增加;同时由于扩散能力的降低而使生长速率减小,所以超高压烧结能在较低的...  相似文献   

3.
Dense nanocrystalline BaTiO3 ceramics with a grain size of 5Onto are prepared under 6 GPa at 1273K using a high pressure sintering method. The sintered bulk is uniform and the relative density is above 97%. We anneal the ceramic samples in oxygen with various temperatures and for the annealing, several broadened peaks can be observed at different times without apparent grain growth. After about 378K( by dielectric measurements. However, these peaks are very different from those of coarser-grained ceramics. It is indicated that both the elimination of oxygen vacancies and the release of residual stresses caused by high pressure greatly improve the overall ferroelectric properties of BaTiO3 ceramics. The observation of nearly linear polarization hysteresis loop after anneal provides the solid evidence of ferroelectricity in these nano-sized BaTiO3 ceramics. It is believed that the absence of 90° domains and the existence of poor-permittivity nonferroelectric grain boundaries contribute to the slim loop.  相似文献   

4.
 在6 GPa压力、1 000 ℃温度条件下制备了致密的纳米BaTiO3陶瓷,合成样品的平均晶粒尺寸为50 nm,理论密度在97%以上。通过介电测量,观察到了样品宽化的相变峰,它与粗晶陶瓷的相变峰大不相同。由于90°电畴的减少和退极化场的存在,观察到了细长的电滞回线,它是样品铁电性存在的有力证据,表明钛酸钡陶瓷的临界尺寸在50 nm以下。  相似文献   

5.
Electrospinning is a versatile process for drawing fibers of diverse materials including polymers, ceramics, and composites. We demonstrate here its application in the synthesis of complex ceramic oxide materials. The phase formation and morphology of BaTiO3 nanofibers synthesized via electrospinning is investigated as a function of heat treatment conditions. Fully crystallized BaTiO3 nanofibers with the perovskite structure are obtained after annealing at 750 °C and show an average grain size of about 30 nm. Tetragonal crystal structure of the fibers is indicated by XRD peak splitting (calculated c/a ratio=1.007), and confirmed by Raman spectroscopy. Furthermore, the advancement in heat treatment of the electrospun fibers yields single crystalline BaTiO3 nanofibers with 50 nm in diameter and lengths up to 1 μm.  相似文献   

6.
表面修饰的钛酸钡的拉曼光谱   总被引:4,自引:0,他引:4       下载免费PDF全文
徐存英  张鹏翔  严磊 《物理学报》2005,54(11):5089-5092
采用水热法制得表面包裹有十二烷基苯磺酸(DBS)和硬脂酸(St)的BaTiO3纳米粒子,平均粒径均为60nm左右.拉曼光谱检测结果表明,样品的确为表面包裹有表面活性剂(DBS或St)的BaTiO3纳米粒子集合体.与未包裹的相比,各光学声子模对应的拉曼振动模式峰均发生了蓝移.还发现不同的包裹体,所导致的蓝移值也不同.从纳米粒子的表面结构及包裹层的压力出发对此现象进行了定性解释和讨论. 关键词: 拉曼光谱 3纳米粒子')" href="#">DBS/ BaTiO3纳米粒子 蓝移  相似文献   

7.
《Current Applied Physics》2014,14(9):1312-1317
In this work, BaTiO3 ceramics modified with 0.5 mol% Au nanoparticles were fabricated by using a combination of the solid-state reaction and pressureless-sintering techniques. By employing a combination of X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Archimedes principle and dielectric measurement techniques, it was found that no phases other than tetragonal BaTiO3 were observed in all ceramics. In contrast to the tetragonality, the relative density, grain size and maximum dielectric constant at Curie temperature of the ceramics were found to increase with sintering temperature. In addition, it has been found that, under suitable sintering temperature, dense perovskite nanogold modified BaTiO3 ceramics with fine-grained microstructure (∼1 μm) and better dielectric properties than those of gold-free ceramics can be produced.  相似文献   

8.
Using (Bi2O3)0.75(Dy2O3)0.25 nano-powder synthesized by reverse titration co-precipitation method as raw material, dense ceramics were sintered by both Spark Plasma Sintering (SPS) and pressureless sintering. According to the predominance area diagram of Bi-O binary system, the sintering conditions under SPS were optimized. (Bi2O3)0.75(Dy2O3)0.25 ceramics with relative density higher than 95% and an average grain size of 20 nm were sintered in only 10 min up to 500 °C. During the pressureless sintering process, the grain growth behavior of (Bi2O3)0.75(Dy2O3)0.25 followed a parabolic trend, expressed as D2 − D02 = Kt, and the apparent activation energy of grain growth was found to be 284 kJ mol− 1. Dense (Bi2O3)0.75(Dy2O3)0.25 ceramics with different grain sizes were obtained, and the effect of grain size on ion conductivity was investigated by impedance spectroscopy. It was shown that the total ion conductivity was not affected by the grain size down to 100 nm, however lower conductivity was measured for the sample with the smallest grain size (20 nm). But, although only the δ phase was evidenced by X-ray diffraction for this sample, a closer inspection by Raman spectroscopy revealed traces of α-Bi2O3.  相似文献   

9.
The temperature dependence of the heat capacity of nanostructured BaTiO3 ceramics produced by the solid-phase method has been studied; before sintering, the synthesized charge is subjected to a severe action in Bridgman anvils in combination with shear deformation. It has been found that the ferroelectric transition is substantially smeared and the phase transition temperature decreases nonlinearly with increasing applied pressure. It has been shown that the defect structure plays a dominant role in the formation of physical properties of the ceramics.  相似文献   

10.
The composition effects on the dielectric and magnetic properties of NiCuZn-BaTiO3 composites fired at low temperature were investigated. The coexistence of perovskite BaTiO3 and spinel ferrite phases in the composites were observed; no significant chemical reactions occurred between BaTiO3 and NiCuZn ceramics during sintering. The nanosized BaTiO3 powders favored a decrease in grain size. The saturation magnetization, remanent magnetization and real permeability continuously decreased with increasing BaTiO3 content. And the real permittivity continuously increased with the BaTiO3 content. The Q-factor (quality factor) exhibited relatively high values with 20-30 wt% BaTiO3. All composite materials exhibited a low dielectric loss below 100 MHz. Synthetically considerations, the composites with 20-30 wt% BaTiO3 could obtain relatively high real permeability and real permittivity values, and the magnetic and dielectric losses were relatively low, so they were the best candidates to produce LC-integrated chip elements.  相似文献   

11.
Single-phase multiferroic BiFeO3 (BFO) powders were prepared by hydrothermal microwave synthesis and dense BiFeO3 ceramics were fabricated for the first time by the low-temperature high-pressure (LTHP) sintering technique. Effect of sintering temperature ranging from 400 to 800 °C (3 min and 10 min) and pressure of 3–8 GPa on structural, microstructural, electric and magnetic properties were investigated through X-ray diffraction, scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), density and magnetic measurements. The results highlighted that LTHP sintering method, thanks to the high pressure involved, requires lower temperature and shorter time than other techniques, avoiding BiFeO3 phase degradation. SEM images show that for short experimental time (t = 3 min) the average grain size of the sintered samples was approximately the same size of raw powder. Extending the sintering time up to 10 min the grain growth phenomena occurred. Moreover the results indicate that the best obtained density value was around 98% of theoretical density. The dielectric behavior of BiFeO3 ceramics was not significantly influenced by the LTHP sintering conditions. Magnetic measurements showed that ceramic BiFeO3 is weakly ferromagnetic at room temperature.  相似文献   

12.
The nanocrystalline Ni0.53Cu0.12Zn0.35Fe1.88O4 and BaTiO3 powders were prepared using Microwave-Hydrothermal (M-H) method at 160 °C/45 min. The as synthesized powders were characterized using the X-ray diffraction (XRD) and Transmission Electron Microscope (TEM). The size of the powders that were synthesized using M-H system was found to be ∼30 and ∼50 nm for ferrite phase and ferroelectric phases, respectively. The powders were densified using microwave sintering method at 900 °C/30 min. The ferrite and ferroelectric phases were observed from XRD and morphology of the composites was observed with the Scanning Electron Microscope (SEM).The magnetic hysteresis loops were recorded using the Vibrating Sample Magnetometer (VSM).The frequency dependence of real (μ′) and imaginary (μ″) parts of permeability was measured in the range of 1 MHz-1.8 GHz. The permeability decreases with an increase of BaTiO3 content at 1 MHz. The transition temperature (TC) of ferrite was found to be 245 °C. The TC of composite materials decreases with an increase in BaTiO3 content.  相似文献   

13.
BiFeO3 (BFO) ceramics of different grain size have been synthesized by spark plasma sintering of sol-gel derived nanoparticles. It was found that with decreasing grain size there occurs an enhancement in magnetization and a simultaneous suppression in current leakage. According to systematic materials characterization, the enhanced magnetization is attributed to the enriched grain boundaries where the missing structural order perturbs the spin helix structure of BFO and thus generates uncompensated spins, while the reduced current leakage is ascribed to fewer conduction paths provided by the compacted grain structure.  相似文献   

14.
We report the ferroelectric aging effect of dense BaTi0.995Mn0.005O3 ceramics with grain size varying from 2000 nm to 150 nm. Given the identical aging process, it is revealed that the significant aging effect with clear double-hysteresis loop, observed in coarse-grain sample, is substantially suppressed with decreasing grain size. This suppression can be attributed to the reduction of tetragonal distortion and the grain boundary barrier effect in fine-grain sample. Consequently, the weak thermodynamic driving force and the limited kinetic migration are unfavorable to a reversible domain switching, resulting in a normal hysteresis loop in small grained samples.  相似文献   

15.
A quantitative core-shell structure model on the grain size effect of nano-BaTiO3 ceramics has been proposed on the basis of the Ginsburg–Landau–Devonshire thermodynamic theory. In this study, we have considered the existence of surface effects, which leads to the core-shell structure in BaTiO3 nanoparticles consisting of inner tetragonal core, gradient lattice strain layer, and surface cubic layer. The size effects on the spontaneous polarization, Curie temperature, c/a ratio, and electrocaloric and dielectric properties of BaTiO3 ferroelectric nanoparticle are successfully explained. Theoretical and experimental results for BaTiO3 nanoparticle are compared and discussed.  相似文献   

16.
采用脉冲激光气相沉积(PLD)方法,在Si(100)晶面上制备了Co:BaTiO3纳米复合薄膜.采用X射线衍射(XRD)结合透射电镜(TEM)方法研究了两种厚度Co:BaTiO3纳米复合薄膜的晶体结构,当薄膜厚度约为30 nm时,薄膜为单一择优取向;当薄膜厚度约为100nm时,薄膜呈多晶结构.原子力显微镜(AFM)分析表明,当膜厚为30nm时,薄膜呈现明显的方形晶粒.采用紫外光电子能谱(UPS)研究了Co的价态和Co:BaTiO3纳米复合薄 关键词: 3')" href="#">BaTiO3 纳米复合薄膜 紫外光电子能谱  相似文献   

17.
采用脉冲激光气相沉积(PLD)方法,在Si(100)晶面上制备了Co:BaTiO3纳米复合薄膜.采用X射线衍射(XRD)结合透射电镜(TEM)方法研究了两种厚度Co:BaTiO3纳米复合薄膜的晶体结构,当薄膜厚度约为30 nm时,薄膜为单一择优取向;当薄膜厚度约为100nm时,薄膜呈多晶结构.原子力显微镜(AFM)分析表明,当膜厚为30nm时,薄膜呈现明显的方形晶粒.采用紫外光电子能谱(UPS)研究了Co的价态和Co:BaTiO3纳米复合薄  相似文献   

18.
Nanocrystalline Tm3+(5%)-doped BaTiO3 (BT-Tm) has been synthesized by the sol–gel method. The morphology, structure, and optical properties of powders and ceramics were characterized. The average grain size of the gel precursor annealed at 700 and 900 °C was 20 nm and 30 nm, respectively. These powders were single phase and crystallized with a cubic structure while the BT-Tm sintered ceramics were crystallized with the tetragonal BaTiO3 structure. The photoluminescence spectra showed typical transitions of Tm3+ ions and a structure consistent with the Tm3+ ions incorporation in the BaTiO3 crystalline lattice. Thermoluminescence peaks recorded at 300 °C (for annealed samples) or at 230 °C for the ceramic sample were assigned to the recombination of the Tm2+-electron traps located mainly at the surface of the nano-crystals or inside the microcrystals, respectively.  相似文献   

19.
ABSTRACT

The (1-x)Na0.5Bi0.5TiO3- xBaTiO3 ceramics (x = 0.1, 0.135 and 0.17) were fabricated by a conventional solid phase sintering process. The bulk density of the obtained samples exceeded 95% of the theoretical relative density as determined by Archimedes method. Dielectric and ferroelectric measurements of these ceramics were performed. Measurements of the ferroelectric properties show that, above the depolarization temperature Td, the shape of the hysteresis loops approaches that of linear dielectrics. The dielectric study results correlate with the hysteresis loops measurements. The relaxor-like behavior of the investigated materials was revealed.  相似文献   

20.
The results of optical studies of Cr3+ and Eu3+ ions doped nanocrystalline ferroelectric BaTiO3 produced by the sol-gel process (particle size 20-40 nm) are reported. The Cr3+ impurity ions 2E-4A2 (R-lines) fluorescence spectra in BaTiO3 revealed significant differences from that reported in literature for the bulk material. At least three types of Cr3+ centers were found in the spectra. The temperature dependence of optical second harmonic generation in nanocrystalline BaTiO3: Eu3+ shows a strong hysteresis in C4v-Oh ferroelectric phase transition region, which was explained by the ordering effects in the system of electric dipole moments of dipole nanocrystals. The temperature dependencies of radiative lifetime of Eu3+5D0 excited level reveal some hysteresis too. The possibility of influence of the ordering in the system of BaTiO3:Eu3+ nanocrystals on the effective index of refraction of the medium and thus on the Eu3+5D0 radiative lifetime, due to the local field effects is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号