首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 574 毫秒
1.
Current noise exists in circuits and electronic devices generally, and it exhibits specific features as the system reaches nanometer size. The noise in the nano-system where external ac fields are applied plays an important role, since the properties of the fields and the nano-system together govern the resulting noise. In this paper, we present the derivation of shot noise by employing the non-equilibrium Green s function technique. The more general formulas for the current correlation and noise spectral density are given. The system is composed of a central nano-system coupled to electrodes, and the obtained noise formulas are related to the Green s functions of detailed central regime and the terminals. As an example, we have performed the numerical calculation on a system with a toroidal carbon nanotube coupled to normal metal leads. The noise and Fano factor show intimate relation with the structure of the system and ac fields. The Aharonov-Bohm-like behaviors on the shot noise spectral density and Fano factor are observed to exhibit oscillation structures with period of quantum flux.  相似文献   

2.
We have investigated the shot noise spectral density in the parallel double-quantum-dot (DQD) interferometer threaded with an Aharonov-Bohm (AB) flux under the perturbation of ac fields. The derivations are based on the nonequilibrium Green’s function (NGF) technique in the Coulomb blockade regime. The AB flux and the perturbation of ac fields together provide a photon-assisted AB interferometer for controlling the shot noise efficiently. The signature of the shot noise reflects the intrinsic microstructure of the DQD system, which plays important roles for the enhancement and suppression of shot noise. The versatile resonant structures of shot noise, Fano factor have been revealed to exhibit the sub-Poissonian and super-Poissonian types of shot noise by adjusting the gate voltages sequentially.  相似文献   

3.
We have investigated the spectral density of shot noise for an ultra-small quantum dot(QD) system in the Coulomb blockade regime when irradiated with microwave fields (MWFs) by employing a nonequilibrium Green’s function technique. The shot noise is sensitive to Coulomb interaction, and the photon-assisted Coulomb blockade behaviour strongly modifies the mesoscopic transport. We have calculated the first and second derivatives of shot noise in the strong and weak coupling regimes to compare the theoretical results with existing experimental results. In the strong coupling regime, the first and second derivatives of shot noise display Fano type peak-valley structures around the charging channel 2E c due to Coulomb interaction. When the magnitudes of the MWFs are sufficiently large, the system displays channel blockade due to photon irradiation. The photon-assisted and Coulomb blockade steps in the noise — as well as the resonant behaviour in the differential noise — are smeared by increasing temperature. The Coulomb interaction suppresses the shot noise, but the ac fields can either suppress the shot noise(balanced case) or enhance the shot noise(unbalanced case). The suppression of shot noise caused by ac fields in the balanced case is greater than that caused by Coulomb interaction in our system. Super-Poissonian shot noise may be induced due to the compound effects of strong Coulomb interaction and photon absorption-emission processes.  相似文献   

4.
We have investigated the shot noise affected by the perturbation of two microwave fields (MWFs) with frequencies ω1 and ω2, which can be classified as the commensurate and incommensurate external ac fields. The time-dependent current correlation function and the spectral density of shot noise have been obtained. They are very different compared with the single-field applied system in the nonlinear regime of the ac potentials. The different photon absorption and emission processes induce different kinds of noise spectral density. We have performed the numerical calculations for both commensurate balanced and unbalanced photon absorptions and emissions. The multi-photon procedure can be seen clearly from the resonance of shot noise. Different commensurate number q = ω21 contributes to different photon absorption and emission behaviors. It is found that the asymmetric configuration of shot noise is intimately associated with the commensurate number q. The differential conductance appears symmetric and asymmetric behaviors, and the channel blockade exhibits. The shot noise is large enough to surpass its saturated value for the unbalanced photon absorption case. The sensitive behaviors of Fano factor associated with different commensurate numbers and amplitudes of ac fields signify that the shot noise can be controlled by external MWFs significantly.  相似文献   

5.
In this paper we investigate the joint effects of the electron-phonon interaction and an external alternating (ac) gate voltage on the spectral density of shot noise through a vibrating quantum dot system, by applying the Lang-Firsov canonical transformation and the Keldysh nonequilibrium Green's function (NGF) technique. We find that the effects of the electron-phonon and electron-photon interaction on the differential shot noise are different. The main resonant peak of the differential shot noise is decreased only when a time-dependent gate voltage is imposed on quantum dot. With the ac field amplitude increasing, the main resonant peak of the differential shot noise decreases. The Fano factor of the system, which exhibits the deviation of shot noise from the Schottky formula, is also studied. Super-Poissonian shot noise appears due to the photon absorption (emission) processes in the low bias voltage region.  相似文献   

6.
We have investigated the shot noise in the mesoscopic system composed of a quantum dot (QD) coupled to ferromagnetic terminals under the perturbation of ac fields. The shot noise has been derived using the nonequilibrium Green's function (NGF) technique to describe the spin polarization effect along with photon absorption and emission processes in the Coulomb blockade regime. We have examined the influence of spin polarization on the shot noise under the perturbation of ac fields in the nonadiabatic regime. The Coulomb blockade effect results in the modification of shot noise compared with the noninteracting case. The spin orientation contributes a spin valve effect for controlling electron tunnelling through this QD, and different resonant forms appear around the Coulomb blockade channel. The photon-assisted spin-splitting and spin-polarization effect contributes a photon-assisted spin valve to adjust the electron tunnelling current and shot noise. The spin-polarization effect varies the value of the Fano factor. However, it does not change the noise type from sub-Poissonian to super-Poissonian.  相似文献   

7.
Qiao Chen 《Physics letters. A》2008,372(15):2714-2719
We have investigated the spectral density of shot noise of the system with a quantum dot (QD) coupled to two single-wall carbon nanotube terminals, where a rotating magnetic field is applied to the QD. The carbon nanotube (CN) terminals act as quantum wires which open quantum channels for electrons to transport through. The shot noise and differential shot noise exhibit novel behaviors originated from the quantum nature of CNs. The shot noise is sensitively dependent on the rotating magnetic field, and the differential shot noise exhibits asymmetric behavior versus source-drain bias and gate voltage. The Fano factor of the system exhibits the deviation of shot noise from the Schottky formula. The super-Poissonian and sub-Poissonian shot noise can be achieved in different regime of source-drain bias.  相似文献   

8.
The effect of noise on the performance of Schottky Barrier Carbon Nanotube Field Effect Transistors (SB-CNTFETs) has been investigated under various bias conditions. In order to calculate the noise power spectral density, the Non-Equilibrium Green’s Function formalism (NEGF) is used to obtain the transmission coefficient and the number of carriers inside the channel. Results are presented in two sections: In the first section the Hooge’s empirical rule is used to investigate the flicker noise properties of SB-CNTFETs with defects in the gate oxide region, while in the second section the thermal and shot noise properties of SB-CNTFETs are studied. Finally, the best bias points in the ON and OFF states have been suggested according to the total noise power spectral density and the device signal to noise ratio.   相似文献   

9.
We study the electronic transmission of a model system composed by two coupled chains with an impurity attached to one of them. Analytical espressions for the transmittivity and for the diagonal and the off-diagonal Green’s function matrix elements are derived. Green’s function behaviour as function of the charge carrier energy is exploited to interpret the system transmittivity calculated by the scattering matrix formalism. We find that while a single substitutional impurity in the ladder may generate a Fano resonance in the transmittivity in the lower or in the higher energy part of the spectrum, in the case of a single side-attached impurity to the ladder, a resonance is found in each energy region. We interpret such resonances in terms of local density of states and off-diagonal Green’s function matrix elements.  相似文献   

10.
We have investigated the spectral density of shot noise for the system of a quantum dot (QD) coupled to two single-wall carbon nanotube terminals irradiated with a microwave field on the QD. The terminal features are involved in the shot noise through modifying the self-energy of QD. The contributions of carbon nanotube terminals to the shot noise exhibit obvious behaviors. The novel side peaks are associated with the photon absorption and emission procedure accompanying the suppression of shot noise. The shot noise in balanced absorption belongs to sub-Poissonian, and it is symmetric with respect to the gate voltage. The differential shot noise displays intimate relation with the nature of carbon nanotubes and the applied microwave field. It exhibits asymmetric behavior for the unbalanced absorption case versus gate voltage. The Fano factor of the system exhibits the deviation of shot noise from the Schottky formula, and the structures of terminals obviously contribute to it. The super-Poissonian and sub-Poissonian shot noise can be achieved in the unbalanced absorption in different regime of source-drain bias.  相似文献   

11.
利用Lang-Firsov正则变换和Keldysh非平衡格林函数方法研究了低温下具有电子-声子相互作用的量子点系统的噪声。我们特别注意了电-声子耦合强度的变化对量子点系统噪声的影响。数值结果表明:随着电-声子耦合强度的增大,系统的噪声增大,同时微分噪声谱中会出现一系列的声子伴带峰,峰的高度和数目对电-声子耦合强度的变化非常敏感。我们也研究了系统的Fano因子,它显示系统噪声对肖特基(Schottky)公式的偏离。在高偏压区,Fano因子随着电-声子耦合强度的增大而增大。  相似文献   

12.
电-声子耦合强度对量子点系统噪声的影响   总被引:1,自引:1,他引:0  
利用Lang-Firsov正则变换和Keldysh非平衡格林函数方法研究了低温下具有电子-声子相互作用的量子点系统的噪声.我们特别注意了电-声子耦合强度的变化对量子点系统噪声的影响.数值结果表明:随着电-声子耦合强度的增大,系统的噪声增大,同时微分噪声谱中会出现一系列的声子伴带峰,峰的高度和数目对电-声子耦合强度的变化非常敏感.我们也研究了系统的Fano因子,它显示系统噪声对肖特基(Schottky)公式的偏离.在高偏压区,Fano因子随着电-声子耦合强度的增大而增大.  相似文献   

13.
常博  梁九卿 《中国物理 B》2011,20(1):17307-017307
We have studied the quantum fluctuations of inelastic spin-electron scattering in quantum dot with an embedded biaxial single molecule-magnet and particularly investigated the zero-frequency shot noise and Fano factor in different magnetic fields. It is found that the shot noise and Fano factor exhibit a stepwise behaviour as bias increases in the presence of interaction between the electron and molecule-magnet for a weak magnetic field. As magnetic field becomes strong, a dip is displayed in the shot-noise-bias curve due to the suppression of inelastic shot noise caused by the quantum tunneling of magnetisation. Because of the spontaneous inelastic tunneling at zero bias, a small shot noise occurs, which results in the case of Fano factor F >> 1. Moreover, our results show that the sweeping speed can also influence the shot noise and Fano factor obviously.  相似文献   

14.
A method is devised to control the current, shot noise and Fano factor in a molecular junction using external fields. The tunneling of electrons through a molecular junction weakly coupled to two leads in the presence of a time-dependent external field is studied using a quantum master equation approach. By combining optimal control theory and assuming a predefined time-dependent current pattern, an external field can be determined which does generate a current pattern close to the requested one. With this approach the current flow pattern in time can be chosen in an almost arbitrary fashion. The same technique can be applied to control the shot noise. For minimizing the current, the corresponding shot noise decreases but does not vanish. By minimizing the shot noise, the corresponding current also approaches zero for the present model of spinless electrons. Within certain limits the proposed strategy even works well for the control of the Fano factor.  相似文献   

15.
The photon-assisted shot noise through a quantum dot in the Kondo regime is investigated by applying time-dependent canonical transformation and non-crossing approximation technique. A basic formula for the photon-assisted shot noise is obtained. The rich dependence of the shot noise on the external ac field and temperature is displayed. At low temperature and low frequencies, the differential shot noise exhibits staircase behavior. When the temperature increases, the steps are rounded. At elevated frequencies, the photon-assisted tunneling becomes more obvious. We have also found that the Fano factor is enhanced as the ac frequency is enhanced.  相似文献   

16.
We investigated the shot noise properties in the diluted-magnetic-semiconductor/semiconductor heterostructures, where the sp-d exchange interaction gives rise to a giant spin splitting when an external magnetic field is applied along the growth direction of the heterostructures. It is found that the noise becomes strongly spin-dependent and can be greatly modulated not only by the external magnetic and electric fields, but also by the structural configuration and geometric parameters. Both the spin-up and spin-down components of the noise spectral density can be greatly suppressed by the magnetic field. The Fano factor is notably sensitive to the transmission probabilities, which varies greatly with the spin-polarization, the external magnetic field, and the structural configuration.  相似文献   

17.
We consider the transport and the noise characteristic in the case of a triple quantum dots T-shape system where two of the dots form a two-level system and the other works in a detector-like setup. Our theoretical results are obtained using the equation of motion method for the case of zero and finite on-site Coulomb interaction in the detector dot. We present analytic results for the electronic Green’s functions in the system’s component quantum dots, and we used numerical calculations to evaluate the system’s transport properties. The transport trough the T-shaped system can be controlled by varying the coupling between the two-level system dots or the coupling between the detector dot and the exterior electrodes. The system’s conductance presents Fano dips for both strong (fast detector) and weak coupling (slow detector) between the detector dot and the external electrodes. Due to stronger electronic correlations the noise characteristics in the case of a slow detector are much higher. This setup may be of interest for the practical realization of qubit states in quantum dots systems.  相似文献   

18.
李桂琴  郭永 《中国物理 B》2013,22(11):117304-117304
The shot noise properties in boron devices are investigated with a tight-binding model and the non-equilibrium Green’s function.It is found that the shot noise and Fano factors can be tuned by changing the structures,the size,and the coupling strength.The shot noise is suppressed momentarily as we switch on the bias voltage,and the electron correlation is significant.The Fano factors are more sensitive to the ribbon width than to the ribbon length in the full coupling context.In the weak-coupling context,the Fano factors are almost invariant with the increase of length and width over a wide bias range.  相似文献   

19.
The shot noise of a parallel double quantum dot (DQD) system under the perturbation of microwave fields is investigated in the weak Kondo regime. Peak-valley structures exhibit in the differential conductance and shot noise, and side resonant peaks emerge around the Kondo peak due to the absorption and emission of photons. The shot noise is sensitively dependent on the adjusting approach through changing the gate voltages. Large resonant Fano factor accompanying photon-induced side peaks appear by simultaneously varying the two gate voltages. The photon suppression and enhancement of shot noise have been evaluated corresponding to the coherent and incoherent current correlation. The destructive interference causes the suppression of shot noise by changing the Aharonov–Bohm phase.  相似文献   

20.
We study the nonequilibrium transport through a single-level quantum dot weakly coupled to Luttinger liquid leads. A general shot noise expression is derived by using nonequilibrium Green function technique. We find that the differential shot noise and differential conductance demonstrate resonant-like behavior as a function of the bias voltage and the quantum dot's energy level for a weak or moderately strong interaction. In the limit of strong electron-electron interaction, the resonant behavior disappears and shows bias-voltage-dependent power law scalings. And the Fano factor also scales as a power law in high bias voltage region. In addition, the Fano factor is enhanced with the electron-electron interaction increased. It implies that the Fano factor can be controlled by tuning the electron-electron interaction in the leads.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号