首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study the forced aspiration of small ( mm) and large ( cm) liquid drops, deposited on prewetted porous membranes, and pumped mechanically with a constant current J. Two kinds of membranes are used where the pores are i) disconnected, cylindrical and calibrated or ii) interconnected “sponge-like”. Whatever the size of the drops and the intensity J of the current, two suction regimes are observed versus time: 1) a “locked” regime, when the drop is pinned, with a dynamic contact angle decreasing from advancing () to finite receding () contact angle; 2) an “unlocked” regime, where the contour line recedes with a constant contact angle closed to . In both regimes, the shape of the drop remains quasistatic, during the suction process, i.e. a spherical cap for small drops and a flat “gravity pancake” for large ones. Received 19 January 2000  相似文献   

2.
A soft bead (radius R b) is pressed with a force F against a hydrophobic glass plate through a water drop (“wet” JKR set-up). We observe with a fast camera the growth of the contact zone bridging the rubber bead to the glass. Depending on the approach velocity V, two regimes are observed : i) at large V a liquid film is squeezed at the interface and dewets by nucleation and growth of a dry contact; ii) at low velocities, the bead remains nearly spherical. As it comes into contact, the rubber bead spreads on the glass with a characteristic time (in the range of one millisecond) τ ≈ ηR b 2/F, where η is the liquid viscosity. The laws of spreading are interpreted by a balance of global mechanical and viscous forces. Received: 22 December 2002 / Accepted: 24 March 2003 / Published online: 29 April 2003 RID="a" ID="a"e-mail: brochard@curie.fr  相似文献   

3.
We study the pinning-depinning phenomenon of a contact line on a solid surface decorated by a random array of nanometric structures. For this purpose, we have investigated the contact angle hysteresis behaviour of six different wetting and non-wetting fluids with surface tensions varying from 25 to 72mN m^-1. For low values of the areal density of defects φd, the hysteresis H increases linearly with φd indicating that “individual” defects pin the contact line. Then, from a given value of φd, the hysteresis H becomes to decrease with increasing φd, indicating a new kind of collective depinning. These two regimes were observed for all fluids used. In both cases, our experimental results are compared with the theoretical predictions for contact angle hysteresis induced by single or multiple topographical defects. We ascribe the decrease of H to the formation of cavities along the wetting front.  相似文献   

4.
We calculate the contribution of pions to the $\bar qq$-expectation value κ(ρ) =<Mq q|M> in symmetric nuclear matter. We employ exact pion propagator renormalized by nucleon-hole and isobar-hole excitations. Conventional straightforward calculation leads to the “pion condensation” at unrealistically small values of densities, causing even earlier restoration of chiral symmetry. This requires a self-consistent approach, consisting in using the models, which include direct dependence of in-medium mass values on κ(ρ), e.g. the Nambu–Jona-Lasinio–model. We show, that in the self-consistent approach the ρ-dependence of the condensate is described by a smooth curve. The “pion condensate” point is removed to much higher values of density. The chiral restoration does not take place at least while ρ < 2.8ρ0 with ρ0 being the saturation value. Validity of our approach is limited by possible accumulation of heavier baryons (delta isobars) in the ground state of nuclear matter. For the value of effective nucleon mass at the saturation density we found m *0) = 0.6m, consistent with nowadays results of other authors. Received: 8 October 1998  相似文献   

5.
We found an exact expression for the Flory radius R F of Gaussian polymers placed in an external periodic field. This solution is expressed in terms of the two parameters η and a that describe the reduced strength of an external field and the period of the field to the polymer gyration radius ratio, respectively. R F is found to be a decaying function of η for any values of a . Provided that the gyration radius is of the order of the period of an external field or less, the ground-state (GS) approximation of the exact result for R F is shown to give qualitatively incorrect results. In addition to the “ground-state” contribution, the exact solution for R F contains an additional term that is overlooked by the GS approximation. This term gives rise to the fact that R F as a function of η exhibits power law behavior (rather than exponential decay obtained from the GS result) once η exceeds the threshold value ηcon .  相似文献   

6.
We compute the dynamical structure factor S(q,τ) of an elastic medium where force dipoles appear at random in space and in time, due to “micro-collapses” of the structure. Various regimes are found, depending on the wave vector q and the collapse time θ. In an early-time regime, the logarithm of the structure factor behaves as (qτ)3/2, as predicted in L. Cipelletti, S. Manley, R.C. Ball, D.A. Weitz, Phys. Rev. Lett. 84, 2275 (2000) using heuristic arguments. However, in an intermediate-time regime we rather obtain a (qτ)5/4 behaviour. Finally, the asymptotic long-time regime is found to behave as q 3/2τ. We also give a plausible scenario for aging, in terms of a strain-dependent energy barrier for micro-collapses. The relaxation time is found to grow with the age t w, quasi-exponentially at first, and then as t w 4/5 with logarithmic corrections. Received 23 July 2001  相似文献   

7.
We compute the dynamical structure factor S(q,τ) of an elastic medium where force dipoles appear at random in space and in time, due to “micro-collapses” of the structure. Various regimes are found, depending on the wave vector q and the collapse time θ. In an early time regime, the logarithm of the structure factor behaves as (qτ)3/2, as predicted in (L. Cipelletti et al., Phys. Rev Lett. 84, 2275 (2000)) using heuristic arguments. However, in an intermediate-time regime we rather obtain a (qτ)5/4 behaviour. Finally, the asymptotic long-time regime is found to behave as q 3/2τ. We also give a plausible scenario for aging, in terms of a strain-dependent energy barrier for micro-collapses. The relaxation time is found to grow with the age tw, quasi-exponentially at first, and then as t w 4/5 with logarithmic corrections. Received 15 April 2002  相似文献   

8.
We investigate the spin structure of the nucleon in an extended Jaffe-Lipkin quark model. In addition to the conventional 3q structure, different (3q)(Q ) admixtures in the nucleon wave function are also taken into account. The contributions to the nucleon spin from various components of the nucleon wave function are discussed. The effect due to the Melosh-Wigner rotation is also studied. It is shown that the Jaffe-Lipkin term is only important when antiquarks are negatively polarized. We arrive at a new “minimal” quark model, which is close to the naive quark model, in order to understand the proton spin “puzzle”. Received: 4 November 2000 / Accepted: 23 October 2001  相似文献   

9.
We predict the existence of a Griffiths phase in dielectrics with a concentrational crossover between dipole glass (electric analog of spin glass) and ferroelectricity. Particular representatives of the above substances are KTaO3:Li, Nb, Na, or relaxor ferroelectrics like Pb1–xLaxZr0.65Ti0.35O3. Since this phase exists above the ferroelectric phase-transition temperature (but below that temperature for ordered substances), we call it a “para-glass phase”. We assert that the difference between paraelectric and para-glass phases in the above substances is the existence of clusters (inherent to the “ordinary” Griffiths phase of Ising magnets) of correlated dipoles. We show that randomness plays a decisive role in the Griffiths (para-glass) phase formation: this phase does not exist in a mean field approximation. To investigate the Griffiths phase properties, we calculate the density of Yang-Lee (YL) zeros in the partition function and find that it has “tails” inherent to the Griffiths phase in the above temperature interval. We perform calculations on the basis of our self-consistent equation for the long-range order parameter in an external electric field. This equation has been derived in the framework of the random field theory. The latter automatically incorporates both short-range (due to indirect interaction via transverse optical phonons of the host lattice) and long-range (ordinary dipole-dipole) interactions between impurity dipoles, so that the problem of long-range interaction considerations does not appear in it. Received 17 May 2000  相似文献   

10.
In order to study the effect of the α,β crystalline structure of polypropylene (PP) on its mechanical properties, it is necessary to prepare samples with variable α/β-phase content but with constant crystallinity and constant spherulite size. With this objective, heat treatment was first defined to be applied to an isotactic PP containing a β nucleating agent in order to achieve these conditions. Then study of the effect of the β-phase content on the tensile properties and fracture behaviour has been done at room temperature. The mechanical properties at fracture were assessed by three-point bending tests and were analysed on the basis of the “Essential Work of Fracture” (EWF). The results show that the elongation at fracture under tensile stress and the “near” Plane-Strain Essential Work of Fracture, w Ie, increase substantially with the β-phase content. Besides, Young's modulus and the yield stress in tensile tests decrease slowly with the β-phase content. Finally, these results are analysed taking account the differences in structure of the α and β spherulites. Received 18 September 2000 and Received in final form 19 December 2000  相似文献   

11.
The stability of linear shear flow of a Newtonian fluid past a flexible membrane is analysed in the limit of low Reynolds number as well as in the intermediate Reynolds number regime for two different membrane models. The objective of this paper is to demonstrate the importance of tangential motion in the membrane on the stability characteristics of the shear flow. The first model assumes the wall to be a “spring-backed” plate membrane, and the displacement of the wall is phenomenologically related in a linear manner to the change in the fluid stresses at the wall. In the second model, the membrane is assumed to be a two-dimensional compressible viscoelastic sheet of infinitesimal thickness, in which the constitutive relation for the shear stress contains an elastic part that depends on the local displacement field and a viscous component that depends on the local velocity in the membrane. The stability characteristics of the laminar flow in the limit of low are crucially dependent on the tangential motion in the membrane wall. In both cases, the flow is stable in the low Reynolds number limit in the absence of tangential motion in the membrane. However, the presence of tangential motion in the membrane destabilises the shear flow even in the absence of fluid inertia. In this case, the non-dimensional velocity (Λt) required for unstable fluctuations is proportional to the wavenumber k ( Λ tk) in the plate membrane type of wall while it scales as k2 in the viscoelastic membrane type of wall ( Λ tk 2) in the limit k→ 0. The results of the low Reynolds number analysis are extended numerically to the intermediate Reynolds number regime for the case of a viscoelastic membrane. The numerical results show that for a given set of wall parameters, the flow is unstable only in a finite range of Reynolds number, and it is stable in the limit of large Reynolds number. Received 8 November 2000 and Received in final form 20 March 2001  相似文献   

12.
The Nambu spinor Green's function approach is applied to calculating the density of states (DOS) and superconducting order parameter in normal-metal/insulator/ferromagnet/superconductor (NM/I/FM/SC) junctions. It is found that the s-wave superconductivity and ferromagnetism can coexist near the FM/SC interface, which is induced by proximity effect. On the SC side, the spin-dependent DOS appears both within and without the energy gap. On the FM side, the superconducting order parameter displays a damped oscillation and the DOS exhibits some superconducting behavior. The calculated result for the DOS in FM for “0 state” and “π state” can reproduce recent tunneling spectra in Al/Al2O3/PdNi/Nb tunnel junctions. Received 1st July 2002 Published online 19 November 2002  相似文献   

13.
An analytical one-dimensional model of the microphase separation in symmetric diblock copolymers is developed. Three stages of the process of the microphase segregation of a quenched diblock copolymer system into a lamella structure are predicted. The first stage involves a fast increase of the amplitude of the quasi-periodical lamella structure (with the average wave vector q0) up to a nearly equilibrium value; the second stage is a slow phase diffusion process which is characterized by increasing coherency of the lamella structure; the third stage is the slow process of the lamella swelling, which is driven by the thermally activated process of the spontaneous deletion of excessive lamellas, the lamella size increasing from the initial value 2π/q 0 to the equilibrium 2π/q eq > 2π/q 0 during the process. The last two stages are described with the specially introduced coarse-grained “amplitude-phase” approximation. It is shown that the relaxation of the gradient of the phase of the lamellar structure is the slowest relaxation process and, thus, can be used as an effective order parameter of the lamellar structure at the later stages of the microphase segregation. Received 10 March 2000 and Received in final form 5 June 2000  相似文献   

14.
We present an analysis of extensive large-scale Monte Carlo simulations of self-avoiding fixed-connectivity membranes for sizes (number of faces) ranging from 512 to 17672 (triangular) plaquettes. Self-avoidance is implemented via impenetrable plaquettes. We simulate the impenetrable plaquette model in both three and four bulk dimensions. In both cases we find the membrane to be flat for all temperatures: the size exponent in three dimensions is ν = 0.95(5) (Hausdorff dimension d H = 2.1(1)). The single flat phase appears, furthermore, to be equivalent to the large bending rigidity phase of non-self-avoiding fixed-connectivity membranes --the roughness exponent in three dimensions is ξ = 0.63(4). This suggests that there is a unique universality class for flat fixed-connectivity membranes without attractive interactions. Finally, we address some theoretical and experimental implications of our work. Received 23 June 2000 and Received in final form 25 October 2000  相似文献   

15.
We investigate, using numerical simulations and analytical arguments, a simple one-dimensional model for the swelling or the collapse of a closed polymer chain of size N, representing the dynamical evolution of a polymer in a Θ-solvent that is rapidly changed into a good solvent (swelling) or a bad solvent (collapse). In the case of swelling, the density profile for intermediate times is parabolic and expands in space as t 1/3, as predicted by a Flory-like continuum theory. The dynamics slows down after a time ∝N 2 when the chain becomes stretched, and the polymer gets stuck in metastable “zig-zag” configurations, from which it escapes through thermal activation. The size of the polymer in the final stages is found to grow as . In the case of collapse, the chain very quickly (after a time of order unity) breaks up into clusters of monomers (“pearls”). The evolution of the chain then proceeds through a slow growth of the size of these metastable clusters, again evolving as the logarithm of time. We enumerate the total number of metastable states as a function of the extension of the chain, and deduce from this computation that the radius of the chain should decrease as 1/ln(ln t). We compute the total number of metastable states with a given value of the energy, and find that the complexity is non-zero for arbitrary low energies. We also obtain the distribution of cluster sizes, that we compare to simple “cut-in-two” coalescence models. Finally, we determine the aging properties of the dynamical structure. The subaging behaviour that we find is attributed to the tail of the distribution at small cluster sizes, corresponding to anomalously “fast” clusters (as compared to the average). We argue that this mechanism for subaging might hold in other slowly coarsening systems. Received 23 October 2000  相似文献   

16.
We study theoretically the behavior of nanoscopic liquid films L (thickness e) intercalated between a solid S and a rubber R (elastic modulus μ). Thickness modulations involve a healing length , which results from a competition between elastic and disjoining pressure. With van der Waals interactions, , where a is a molecular size and h0 the rubber capillary length ( , interfacial tension). If the Hamaker constant of the intercalated liquid is negative, the film dewets by amplification of peristaltic fluctuations (“spinodal dewetting”). The typical size of the contacts is predicted to scale like for films of thicknesses . The rise time of the fastest mode, predicted to scale like , should be very sensitive to the film thickness. Received 11 February 2000 and Received in final form 22 May 2000  相似文献   

17.
The origin of the intrinsic excitonic (“green”) luminescence in ABO3 perovskites remains a hot topic over the last quarter of a century. We suggest as a theoretical interpretation for the “green” luminescence in these crystals, the recombination of electron and hole polarons forming a charge transfer vibronic exciton. In order to check quantitatively the proposed model, we performed quantum chemical calculations using the Intermediate Neglect of Differential Overlap (INDO) method combined with the periodic defect model. The luminescence energies calculated for four perovskite crystals are found to be in good agreement with experimental data. Received 19 December 2001 and Received in final form 14 March 2002 Published online 25 June 2002  相似文献   

18.
We elaborate on a general method that we recently introduced for characterizing the “natural” structures in complex physical systems via multi-scale network analysis. The method is based on “community detection” wherein interacting particles are partitioned into an “ideal gas” of optimally decoupled groups of particles. Specifically, we construct a set of network representations (“replicas”) of the physical system based on interatomic potentials and apply a multiscale clustering (“multiresolution community detection”) analysis using information-based correlations among the replicas. Replicas may i) be different representations of an identical static system, ii) embody dynamics by considering replicas to be time separated snapshots of the system (with a tunable time separation), or iii) encode general correlations when different replicas correspond to different representations of the entire history of the system as it evolves in space-time. Inputs for our method are the inter-particle potentials or experimentally measured two (or higher order) particle correlations. We apply our method to computer simulations of a binary Kob-Andersen Lennard-Jones system in a mixture ratio of A80B20 , a ternary model system with components “A”, “B”, and “C” in ratios of A88B7C5 (as in Al88Y7Fe5 , and to atomic coordinates in a Zr80Pt20 system as gleaned by reverse Monte Carlo analysis of experimentally determined structure factors. We identify the dominant structures (disjoint or overlapping) and general length scales by analyzing extrema of the information theory measures. We speculate on possible links between i) physical transitions or crossovers and ii) changes in structures found by this method as well as phase transitions associated with the computational complexity of the community detection problem. We also briefly consider continuum approaches and discuss rigidity and the shear penetration depth in amorphous systems; this latter length scale increases as the system becomes progressively rigid.  相似文献   

19.
We use an effective field theory (EFT) which contains only short-range interactions to study the dependence of a variety of three-nucleon observables on the pion mass. The pion-mass dependence of input quantities in our “pionless” EFT is obtained from a recent chiral EFT calculation. To the order we work at, these quantities are the 1 S 0 scattering length and effective range, the deuteron binding energy, the 3 S 1 effective range, and the binding energy of one three-nucleon bound state. The chiral EFT input we use has the inverse 3 S 1 and 1 S 0 scattering lengths vanishing at m π crit = 197.8577 MeV. At this “critical” pion mass, the triton has infinitely many excited states with an accumulation point at the three-nucleon threshold. We compute the binding energies of these states up to next-to-next-to-leading order in the pionless EFT and study the convergence pattern of the EFT in the vicinity of the critical pion mass. Furthermore, we use the pionless EFT to predict how doublet and quartet nd scattering lengths depend on m π in the region between the physical pion mass and m π = m π crit .  相似文献   

20.
Superconductors put into rotation develope a spontaneous internal magnetic field (the “London field”). In this paper Ginzburg Landau equations for order parameter, field, and current distributions for superconductors in rotation are derived. Two simple examples are discussed: the massive cylinder and the “Little and Parks geometry”: a thin film of superconducting material deposited on a cylinder of normal material. A dependence of T c on rotational frequency is predicted. The magnitude of the effect is estimated and should be observable. Received 28 May 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号