首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
采用沉积的方法在镁合金AZ31表面制备植酸转化膜并研究了pH值的影响. 利用极化曲线和电化学阻抗谱方法测定其耐腐蚀性能,用扫描电子显微镜观察转化膜的表面微观结构,用能谱测定转化膜的组成元素. 在理论上通过热力学的方法分析最佳pH值. 植酸转化膜可以提高镁合金AZ31的耐腐蚀性能. 当植酸溶液的pH=5时腐蚀效率达到了89.19%,此时腐蚀电位正移了156 mV,腐蚀电流密度与没有处理的试样相比减小了约一个数量级. 热力学分析表明植酸转化膜的耐腐蚀性能不仅受植酸根离子和镁离子浓度的影响,也与氢气释放的速率有关.  相似文献   

2.
Chemical nature of phytic acid conversion coating on AZ61 magnesium alloy   总被引:6,自引:0,他引:6  
Phytic acid (PA) conversion coating on AZ61 magnesium alloy was prepared by the method of deposition. The influences of pH, time and PA concentration on the formation process, microstructure and properties of the conversion coating were investigated. Scanning electron microscopy (SEM) was used to observe the microstructure. The chemical nature of conversion coating was investigated by energy dispersive X-ray spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) techniques. The corrosion resistance was examined by means of potentiodynamic polarization method. The adhesive ability was tested by score experiments. The results showed that the growth and microstructure of the conversion coatings were all obviously affected by pH, time and PA concentration. In 0.5 mg/ml PA solution with a pH of 5, an optimization conversion coating formed after 20 min immersion time by deposition of PA on AZ61 magnesium alloy surface through chelating with Al3+. It made the corrosion potential Ecorr of sample shifted positively about 171 mV than that of the untreated sample, and the adhesive ability reached to Grade 1 (in accordance with GB/T 9286).  相似文献   

3.
In this paper, a new composite coating was fabricated on magnesium alloy by a two-step approach, to improve the corrosion resistance and biocompatibility of Mg-Zn-Y-Nd alloy. First, fluoride conversion layer was synthesized on magnesium alloy surface by immersion treatment in hydrofluoric acid and then, Ti-O film was deposited on the preceding fluoride layer by magnetron sputtering. FE-SEM images revealed a smooth and uniform surface consisting of aggregated nano-particles with average size of 100 nm, and a total coating thickness of ∼1.5 μm, including an outer Ti-O film of ∼250 nm. The surface EDS and XRD data indicated that the composite coating was mainly composed of crystalline magnesium fluoride (MgF2), and non-crystalline Ti-O. Potentiodynamic polarization tests revealed that the composite coated sample have a corrosion potential (Ecorr) of −1.60 V and a corrosion current density (Icorr) of 0.17 μA/cm2, which improved by 100 mV and reduced by two orders of magnitude, compared with the sample only coated by Ti-O. EIS results showed a polarization resistance of 3.98 kΩ cm2 for the Ti-O coated sample and 0.42 kΩ cm2 for the composite coated sample, giving an improvement of about 100 times. After 72 h immersion in SBF, widespread damage and deep corrosion holes were observed on the Ti-O coated sample surface, while the integrity of composite coating remained well after 7 d. In brief, the data suggested that single Ti-O film on degradable magnesium alloys was apt to become failure prematurely in corrosion environment. Ti-O film deposited on fluoride-treated magnesium alloys might potentially meet the requirements for future clinical magnesium alloy stent application.  相似文献   

4.
The molybdenum/lanthanum-based (Mo/La) composite conversion coating on AZ31 magnesium alloy was investigated and the corrosion resistance was evaluated as well. The morphology, composition and corrosion resistance of the coating were studied by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and potentiodynamic polarization analysis, respectively. The results revealed that the conversion coating consisted of spherical nodular particles, which was mainly composed of Mo, La, O and Mg. After conversion treatment the corrosion potential shifts about 500 mV positively, and the corrosion current density decreases two orders of magnitude. The corrosion resistance of AZ31 alloy is remarkably improved by Mo/La composite conversion coating.  相似文献   

5.
High corrosion resistance Cu/Ni-P coatings were electrodeposited on AZ91D magnesium alloy via suitable pretreatments, such as one-step acid pickling-activation, once zinc immersion and environment-friendly electroplated copper as the protective under-layer, which made Ni-P deposit on AZ91D Mg alloy in acid plating baths successfully. The pH value and current density for Ni-P electrodeposition were optimized to obtain high corrosion resistance. With increasing the phosphorous content of the Ni-P coatings, the deposits were found to gradually transform to amorphous structure and the corrosion resistance increased synchronously. The anticorrosion ability of AZ91D Mg alloy was greatly improved by the amorphous Ni-P deposits, which was investigated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The corrosion current density (Icorr) of the coated Mg alloy substrate is about two orders of magnitude less than that of the uncoated.  相似文献   

6.
A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(dl-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.  相似文献   

7.
The microstructure, morphology and composition highly determine the corrosion resistance and bioactivity of coating. In traditional cathodic electrodeposition process, because of the unfavorable effects of the polarization of concentration difference and H2 evolution, fluorine-doped hydroxyapatite coating was loose and porous. This coating could not ensure the long-term stability of the Mg alloy implants. In order to improve the corrosion resistance and bioactivity of coating, pulse electrodeposition and H2O2 were introduced into the electrodeposition to deposit fluorine-doped hydroxyapatite coating. As a comparative study, microstructure, corrosion resistance properties and bioactivity of traditional cathodic electrodeposition coating and pulse electrodeposition coating were investigated, respectively. The results revealed that nano fluorine-doped hydroxyapatite coating could be prepared by pulse electrodeposition, and the coating was dense and uniform. The potentiodynamic polarization experiment indicated that the dense and uniform coating could effectively protect Mg alloy substrate from corrosion. Immersion testing was performed in simulated body fluid. It was found that pulse electrodeposition coating could more effectively induce the precipitation of Mg2+, Ca2+ and PO43− in comparison with traditional cathodic electrodeposition coating, because the nano phase had comparatively high specific surface area. Thus magnesium alloy coated with fluorine-doped nano-hydroxyapatite coating may be a promising candidate as biodegradable bone implants, and was worthwhile to further investigate the in vivo degradation behavior.  相似文献   

8.
Electroless deposition of Ni-W-P coating on AZ91D magnesium alloy   总被引:1,自引:0,他引:1  
Ternary Ni-W-P alloy coating was deposited directly on AZ91D magnesium alloy by using an alkaline-citrate-based baths. Nickel sulfate and sodium tungstate were used as metal ion sources, respectively, and sodium hypophosphite was used as a reducing agent. The pH value of the electroless bath was tailored for magnesium alloy. The coating was characterized for its structure, morphology, microhardness and the corrosion properties. SEM observation showed the presence of dense and coarse nodules in the ternary coating. EDS analysis showed that the content of tungsten in the Ni-W-P alloy was 4.5 wt.%. Both the electrochemical analysis and the immersion test in 10% HCl solution revealed that the ternary Ni-W-P coating exhibited good corrosion resistance properties in protecting the AZ91D magnesium alloy.  相似文献   

9.
The morphology of a chromium-free conversion coating for AZ91D magnesium alloy was observed with an Atomic Force Microscopy. The results showed the uniform conversion coating has a relatively smooth appearance with shallow valleys. The EDX results indicated that the compositions of the coating were mainly compounds of Mg, Al, Mn, P, Ca and O. The XRD result showed that the coating contained amorphous materials and a small quantity of crystalline compound. The pitting product of the coating in NaCl water solution mainly composed of Mg, Cl, Mn, P, Ca and O. The corrosion behavior of the samples in NaCl solution was also studied by electrochemical impedance spectroscopy (EIS), which was characterized by one capacitive loop and one inductive loop. Based upon study on both a mathematical model for Faradic admittance of coating in NaCl solution and EIS, it could be considered that the inductive loop was caused by the adsorption of Cl anion and the appearance of pitting corrosion. A degradation mechanism of the coating in NaCl solution is set forth: dissolution velocity of the Cl adsorption regions of the coating is higher than those non-adsorption regions, for Cl anions are selective adsorption at some regions of coating surface. When the adsorption regions of coating layer are penetrated by dissolution, the pitting comes into being. The degradation mechanism of conversion coating and the mathematical model are consistent with the EIS results, polarization measurement results and coating's corrosion test results.  相似文献   

10.
采用显微红外成像技术对镁合金阳极氧化膜表面的腐蚀特性进行了研究。镁合金在7.3 Wt% Na2SO4溶液中浸泡后,表面氧化层中的部分MgO逐渐转化为Mg(OH)2,进而发生溶解和脱落,使得镁合金失去保护作用。当浸泡时间达到2 h时,显微红外成像结果表明阳极氧化膜中Mg(OH)2的红外吸收信号最强,Mg(OH)2的含量最多。而4 h后Mg(OH)2的红外吸收信号开始减弱,Mg(OH)2开始减少,镁合金不断被腐蚀。氧化膜中另一成分Al2O3随浸泡时间的显微红外成像信息与Mg(OH)2的变化规律相同。采用电化学阻抗谱技术对阳极氧化膜的阻抗进行测试,其阻抗随时间的变化特点基本符合氧化膜腐蚀规律。本研究对于镁合金阳极氧化膜的表征具有很好的指导作用和推广应用价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号