首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The magnetotransport and magnetoresistive (MR) properties of manganese-based La0.67Ca0.33MnO3 perovskite with different grain sizes are reported. The electrical resistivity was measured as a function of temperature in magnetic fields of 0.5 and 1 T. The insulator–metal transition temperature, T IM, shifted to a higher temperature with the application of the magnetic field. In zero field, T IM is almost constant (∼271 K) for all samples except for the sample with the largest grain size, where T IM=265 K. The temperature dependence of resistivity was fitted with several equations in the metallic (ferromagnetic) region and the insulating (paramagnetic) region. The density of states at the Fermi level, N(E F), and the activation energy of electron hopping were estimated by fitting the resistivity versus temperature curves. The ρT 2 curves are nearly linear in the metallic regime, but the ρT 2.5 curves exhibit a deviation from linearity. The variable range hopping model and small polaron hopping model fit the data well in the high-temperature region, indicating the existence of the Jahn–Teller distortion that localizes the charge carriers. MR was found to increase with an increase in the magnetic field, an effect which is attributed to the intergrain spin tunneling effect.  相似文献   

2.
A monocrystal ofFe 3 O 4 is characterized by resistance, magnetoresistance and magnetic measurements in a temperature range from 4.2 K to 350 K and magnetic field-cycling from −9 T to 9 T. The resistance measurements revealed a metal-insulator Verwey transition (VT) atT v =123.76 K with activation energy E=92.5 meV at T >T v and temperature-substitute for the activation energy below the VT,T 0=E/k B ≈3800 K within 70 K–110K. The magnetotransport results independently verified the VT at 123.70 K, with discontinuous change in the magnetic moment ΔM≈0.21 ΔM≈0.21μ B and resistance hysteresis, dependent on the magnetic field in a narrow temperature range of 0.4° around theT v . The magnetic characterization established self consistentlyT v as ≈123.67 K, the jump in the magnetization at the VT≈0.25μ B and confirmed, that the magnetocrystalline anisotropy is the main microscopic mechanism responsible for the magnetization of the monocrystal (88%) with additional natural and imposed defects contributing as 12%.  相似文献   

3.
The NMR spectra of 63Cu and 65Cu natural copper isotopes in a LiCu2O2 multiferroic single crystal compound have been measured above and below the temperature of magnetic phase transition (T c = 23 K) in zero magnetic field and in applied magnetic field H 0 = 94 kOe parallel to the c axis of the crystal. In LiCu2O2 below T c, a complicated helical magnetic structure with the magnetic moment of copper ions Cu2+ varying along the chain according to the harmonic law with the wave vector being incommensurate to the crystal lattice constants has been revealed. The experimental results have been successfully interpreted using the model based on the planar helical magnetic structure. It has been found that the plane of rotation for Cu2+ magnetic moments in LiCu2O2 does not coincide at H 0 = 0 with the ab plane. The high magnetic field (H 0 = 94 kOe) applied along the c axis of the single crystal does not affect the spatial orientation of the plane of rotation.  相似文献   

4.
The magnetic superconductorRu0.9Sr2YCu2.1O7.9 (Ru-1212Y) has beeninvestigated using neutron diffraction under variable temperature and magnetic field. Withthe complementary information from magnetization measurements, we propose a magnetic phasediagram T-H for the Ru-1212 system. Uniaxialantiferromagnetic (AFM) order of 1.2μ B /Ruatoms with moments parallel to the c-axis is found below the magnetictransition temperature at  ~140 K in the absence of magnetic field. In addition,ferromagnetism (FM) in the ab-plane develops below  ~120 K, butis suppressed at lower temperature by superconducting correlations. Externally appliedmagnetic fields cause Ru-moments to realign from the c-axis to theab-plane, i.e. along the ?1,1,0? direction, and induce ferromagnetismin the plane with  ~1μ B at 60 kOe.These observations of the weak ferromagnetism suppressed by superconductivity and thefield-induced metamagnetic transition between AFM and FM demonstrate not only competingorders of superconductivity and magnetism, but also suggest a certain vortex dynamicscontributing to these magnetic transitions.  相似文献   

5.
Electrical, resonant, and magnetic properties of intercalated copper chromium disulfide CuCrS2 are studied. It is established that CuCrS2 is an antiferromagnetic semiconductor with Néel temperature TN=40.7 K and an effective magnetic moment of 4.3µB. Anomalies in the electrical, magnetic, and resonant properties of CuCrS2 are found at Tc=110 K, which suggest an electron transition accompanied by alteration of the valences of the 3d-metal ions.  相似文献   

6.
We report measurements of the temperature dependence of the electrical resistivity, ρ(T), and magnetic pen-etration depth, λ(T), for polycrystalline samples of Eu0.5K0.5Fe2As2 with T c = 31 K. ρ(T) follows a linear temperature dependence above T c and bends over to a weaker temperature dependence around 150 K. The magnetic penetration depth, determined by radio frequency technique displays an unusual minimum around 4 K which is associated with short-range ordering of localized Eu3+ moments. The article is published in the original.  相似文献   

7.
The magnetic structure of the NaFeGe2O6 monoclinic compound has been experimentally investigated using the elastic scattering of neutrons. At a temperature of 1.6 K, an incommensurate magnetic structure has been observed in the form of an antiferromagnetic helix formed by a pairs of the spins of the Fe3+ ions with helical modulation in the ac plane of the crystal lattice. The wave vector of the magnetic structure has been determined and its temperature behavior has been studied. The analysis of the temperature dependences of the specific heat and susceptibility, as well as the isotherms of the field dependence of the magnetization, has revealed the existence of not only the order-disorder magnetic phase transition at the point T N = 13 K, but also an additional magnetic phase transition at the point T c = 11.5 K, which is assumingly an orientation phase transition.  相似文献   

8.
The physical and structural properties of Fe1.11Te and Fe1.11Te0.5Se0.5 have been investigated by means of X-ray and neutron diffraction as well as physical property measurements. For the Fe1.11Te compound, the structure distortion from a tetragonal to monoclinic phase takes place at 64 K accompanied with the onset of antiferromagnetic order upon cooling. The magnetic structure of the monoclinic phase was confirmed to be of antiferromagnetic configuration with a propagation vector k = (1/2, 0, 1/2) based on Rietveld refinement of neutron powder diffraction data. The structural/magnetic transitions are also clearly visible in magnetic, electronic and thermodynamic measurements. For superconducting Fe1.11Te0.5Se0.5 compound, the superconducting transition with T c = 13.4 K is observed in the resistivity and ac susceptibility measurements. The upper critical field H c2 is obtained by measuring the resistivity under different magnetic fields. The Kim’s critical state model is adopted to analyze the temperature dependence of the ac susceptibility and the intergranular critical current density is calculated as a function of both field amplitude and temperature. Neutron diffraction results show that Fe1.11Te0.5Se0.5 crystalizes in tetragonal structure at 300 K as in the parent compound Fe1.11Te and no structural distortion is detected upon cooling to 2 K. However an anisotropic thermal expansion anomaly is observed around 100 K.  相似文献   

9.
Early work on the iron-arsenide compounds supported the view, that a reduced dimensionality might be a necessary prerequisite for high-T c superconductivity. Later, however, it was found that the zero-temperature upper critical magnetic field, H c2(0), for the 122 iron pnictides is in fact rather isotropic. Here, we report measurements of the temperature dependence of the electrical resistivity, ρ(T), in Ba0.5K0.5Fe2As2 and Ba0.68K0.32Fe2As2 single crystals in zero magnetic field and in Ba0.68K0.32Fe2As2 in static and pulsed magnetic fields up to 60 T. We find that the resistivity of both compounds in zero field is well described by an exponential term due to inter-sheet umklapp electron-phonon scattering between light electrons around the M point to heavy hole sheets at the Γ point in reciprocal space. From our data, we construct an H-T phase diagram for the inter-plane (H | c) and in-plane (H | ab) directions for Ba0.68K0.32Fe2As2. Contrary to published data for 122 underdoped FeAs compounds, we find that H c2(T) is in fact anisotropic in optimally doped samples down to low temperatures. The anisotropy parameter, γ = H c2 ab /H c2 c , is about 2.2 at T c . For both field orientations we find a concave curvature of the H c2 lines with decreasing anisotropy and saturation towards lower temperature. Taking into account Pauli spin paramagnetism, we perfectly can describe H c2 and its anisotropy.  相似文献   

10.
The DC magnetization and AC complex magnetic susceptibilities were measured for MgB2 single crystals, unsubstituted and carbon substituted with the composition of Mg(B0.94C0.05)2. The measurements were performed in AC and DC magnetic fields oriented parallel to the c-axis of the crystals. From the DC magnetization loops and the AC susceptibility measurements, critical current densities (J c were derived as a function of temperature and the DC and AC magnetic fields. Results show that the substitution with carbon decreases J c ) at low magnetic fields, opposite to the well known effect of an increase of J c at higher fields. AC magnetic losses were derived from the AC susceptibility data as a function of amplitude and the DC bias magnetic field. The AC losses were determined for temperatures of 0.6 and 0.7 of the transition temperature T c , so close to the boiling points of LH2 and LNe, potential cooling media for magnesium diboride based composites. The results are analyzed and discussed in the context of the critical state model.  相似文献   

11.
In order to directly observe neutron scattering by heavy fermion quasiparticles at low temperatures, a CeRu2Si2 single crystal has been studied by the small-angle neutron scattering method. In the experiment, neutron scattering is observed at T = 0.85 K for momentum transfers q ≤ 0.04 Å?1, which is treated as the orbital component of magnetic scattering by heavy fermion quasiparticles. It has been found that the application of a magnetic field H = 1 T leads to both an increase in the observed scattering and its anisotropy with respect to the field direction. Moreover, measurements in the magnetic field reveal additional scattering for q > 0.04 Å?1, which is well described by a Lorentzian and is interpreted as neutron magnetic scattering by spin-density fluctuations with a correlation radius Rc ≈ 30 Å.  相似文献   

12.
The magnetic properties of the Nd0.5Gd0.5Fe3(BO3)4 single crystal have been studied in principal crystallographic directions in magnetic fields to 90 kG in the temperature range 2–300 K; in addition, the heat capacity has been measured in the range 2–300 K. It has been found that, below the Néel temperature T N = 32 K down to 2 K, the single crystal exhibits an easy-plane antiferromagnetic structure. A hysteresis has been detected during magnetization of the crystal in the easy plane in fields of 1.0–3.5 kG, and a singularity has been found in the temperature dependence of the magnetic susceptibility in the easy plane at a temperature of 11 K in fields B < 1 kG. It has been shown that the singularity is due to appearance of the hysteresis. The origin of the magnetic properties of the crystal near the hysteresis has been discussed.  相似文献   

13.
Co3O2BO3 and Co2FeO2BO3 single crystals with a ludwigite structure are fabricated, and their crystal structure and magnetic properties are studied in detail. Substituted ludwigite Co2FeO2BO3 undergoes two-stage magnetic ordering at the temperatures characteristic of Fe3O2BO3 (T N1 ≈ 110 K, T N2 ≈ 70 K) rather than Co3O2BO3 (T N = 42 K). This effect is explained in terms of preferred occupation of nonequivalent crystallographic positions by iron, which was detected by X-ray diffraction. Both materials exhibit a pronounced uniaxial magnetic anisotropy. Crystallographic direction b is an easy magnetization axis. Upon iron substitution, the cobalt ludwigite acquires a very high magnetic hardness.  相似文献   

14.
High pressure resistivity measurements of the organic compound (TMTTF)2BF4 have been performed in a newly developped Bridgman cell providing good pressure conditions on a wide pressure range. For the first time in this compound a zero resistance superconducting state is observed between 3 and 4 GPa. At temperatures above the superconducting transition, the resistivities of the two high quality samples show a different behavior. One sample, provides indications for a magnetic quantum critical point at the maximum of Tc, whereas in the other antiferromagnetic spin-fluctuations are present above Tc.  相似文献   

15.
A theory describing the magnetic properties of a two-band superconductor with a varying charge carrier density is constructed. The upper critical field H c2(ab) parallel to the ab plane and field H c2(c) parallel to the c axis are determined in the entire temperature range 0 < T < T c . A considerable increase in upper critical field H c2(ab) as compared to H c2(c) because of strong anisotropy of the system is detected. Anisotropy of coefficient γ H = H c2(ab) / H c2(c) is obtained as a function of temperature for pure MgB2 and as a function of the chemical potential in the case when Mg and B atoms are replaced with other chemical elements. A correlation between the variation in the superconducting transition temperature upon an increase in the chemical potential and critical magnetic fields H c2(ab) and H c2(c) is observed. The effect of doping on magnetic anisotropy is also determined.  相似文献   

16.
The crystal and magnetic structures of Dy1-xCaxBaCo2O5.5 for x = 0.0 and 0.1 have been studied by neutron powder diffraction and the crystal structures of both compounds were found to be best described in space group Pmmm with a ap × 2ap × 2ap unit cells where ap is the lattice parameter of the cubic perovskite unit cell. The a- and b-axes were found to decrease and increase abruptly between 315 and 350 K as the temperature increases and the unit cell volumes exhibit signs of excess thermal expansion in the temperature range from 260 to 315 K. Dy0.9Ca0.1BaCo2O5.5 orders antiferromagnetically for T ≤ 305 K into a G-type magnetic structure with a 2ap × 2ap × 2ap magnetic unit cell. DyBaCo2O5.5 exhibits two magnetically ordered phases and a G-type magnetic structure was observed at the investigated temperatures 260 and 290 K. A 2ap × 2ap × 4ap magnetic unit cell was needed for indexing of the magnetic reflections observed for T ≤ 230 K. The low temperature magnetic structure of DyBaCo2O5.5 is different from the observed magnetic structures of TbBaCo2O5.5 and HoBaCo2O5.5 despite the proximity of Tb, Dy and Ho in the periodic table. It is a relatively complex antiferromagnetic structure with both pyramidally and octahedrally coordinated Co ions in the intermediate spin state. It contains both ferro- and antiferromagnetic interactions and the magnetic moments are canted in the a, b-plane. The canting angles between the magnetic moments and the b-axis are 6.6 and 50.0° at 20 K for the pyramidally and octahedrally coordinated Co ions, respectively. The high and low temperature magnetic phases were found to coexist at 230 K.  相似文献   

17.
The three thermo-optic coefficients of the biaxial laser host KLu(WO4)2 are measured at 633 nm by a deflection method. Their values at 300 K amount to n g / T=−7.4×10−6 K−1; n m / T=−1.6×10−6 K−1 and n p / T=−10.8×10−6 K−1. Nearly athermal propagation directions are found for polarizations along the N m and N p dielectric axes.  相似文献   

18.
Physical properties of NdAu2Ge2, crystallising with the tetragonal ThCr2Si2-type crystal structure, were investigated by means of magnetic, calorimetric and electrical transport measurements as well as by neutron diffraction. The compound exhibits antiferromagnetic ordering below TN=4.5 K with a collinear magnetic structure of the AFI-type. The neodymium magnetic moments are parallel to the c-axis and amount to 1.04(4) μB at 1.5 K. The observed magnetic behaviour is strongly influenced by crystalline electric field effect.  相似文献   

19.
The nature of the phonon and magnon modes in the CoCr2O4 multiferroic with a cubic spinel structure has been studied using submillimeter spectroscopy and infrared Fourier spectroscopy. This paper reports on the first measurement of the evolution with temperature of the exchange optical magnon in the ferrimagnetic (T C = 94 K) and two low-symmetry (T S ≈ 26 K, T lock-in = 14.5 K) phases of CoCr2O4 down to T = 5 K in zero magnetic field. It has been shown that the detected magnon is not a ferrimagnetic order parameter and originates, most probably, from spin precession in the cobalt sublattices. At the points of the magnetic phase transitions, the oscillator parameters of the two lowest-frequency phonon modes reveal an anomalous temperature behavior, thus evidencing the presence of significant interaction between the magnetic and phonon subsystems. The increase by 25% of the damping parameter of the phonon mode originating from vibrations of the CoO4 tetrahedra during the transition of CoCr2O4 to the multiferroic state (T < T S ) suggests structural changes in the lattice involving loss of spatial central symmetry of the medium.  相似文献   

20.
Vortex excitations have been detected at temperatures both below and above the critical temperature when investigating local magnetic fields on the surface of a Bi2Sr2Ca2Cu3O10 single crystal by means of an electron paramagnetic resonance (EPR) probe. A thin layer of a diphenyl picrylhydrazyl organic radical deposited on the crystal surface is used as the EPR probe. A narrow EPR signal makes it possible to detect weak distortions of the magnetic field appearing at TT c. The analysis of the temperature dependences of the resonance field and the EPR linewidth is thebasis of the assumption of the vortex nature of magnetic excitations in this temperature range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号