首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the formfactors which are entire analytic functions in a momentum space, nonlocality is introduced for a wide class of interaction Lagrangians in the quantum theory of one-component scalar field φ(x). We point out a regularization procedure which possesses the following features:
  1. The regularizedS δ matrix is defined and there exists the limit $$\mathop {\lim }\limits_{\delta \to 0} S^\delta = S.$$
  2. The Green positive-frequency functions which determine the operation of multiplication in \(S \cdot S^ + \mathop = \limits_{Df} S \circledast S^ + \) can be also regularized ?δ and there exists the limit $$\mathop {\lim }\limits_{\delta \to 0} \circledast ^\delta = \circledast \equiv .$$
  3. The operator \(J(\delta _1 ,\delta _2 ,\delta _3 ) = S^{\delta _1 } \circledast ^{\delta _2 } S^{\delta _3 + } \) is continuous at the point δ123=0.
  4. $$S^\delta \circledast ^\delta S^{\delta + } \equiv 1at\delta > 0.$$ Consequently, theS-matrix is unitary, i.e. $$S \circledast S^ + = S \cdot S^ + = 1.$$
  相似文献   

2.
The general theory of inhomogeneous mean-field systems of Raggio and Werner provides a variational expression for the (almost sure) limiting free energy density of the Hopfield model $$H_{N,p}^{\{ \xi \} } (S) = - \frac{1}{{2N}}\sum\limits_{i,j = 1}^N {\sum\limits_{\mu = 1}^N {\xi _i^\mu \xi _j^\mu S_i S_j } } $$ for Ising spinsS i andp random patterns ξμ=(ξ 1 μ 2 μ ,...,ξ N μ ) under the assumption that $$\mathop {\lim }\limits_{N \to \gamma } N^{ - 1} \sum\limits_{i = 1}^N {\delta _{\xi _i } = \lambda ,} \xi _i = (\xi _i^1 ,\xi _i^2 ,...,\xi _i^p )$$ exists (almost surely) in the space of probability measures overp copies of {?1, 1}. Including an “external field” term ?ξ μ p hμμξ i=1 N ξ i μ Si, we give a number of general properties of the free-energy density and compute it for (a)p=2 in general and (b)p arbitrary when λ is uniform and at most the two componentsh μ1 andh μ2 are nonzero, obtaining the (almost sure) formula $$f(\beta ,h) = \tfrac{1}{2}f^{ew} (\beta ,h^{\mu _1 } + h^{\mu _2 } ) + \tfrac{1}{2}f^{ew} (\beta ,h^{\mu _1 } - h^{\mu _2 } )$$ for the free energy, wheref cw denotes the limiting free energy density of the Curie-Weiss model with unit interaction constant. In both cases, we obtain explicit formulas for the limiting (almost sure) values of the so-called overlap parameters $$m_N^\mu (\beta ,h) = N^{ - 1} \sum\limits_{i = 1}^N {\xi _i^\mu \left\langle {S_i } \right\rangle } $$ in terms of the Curie-Weiss magnetizations. For the general i.i.d. case with Prob {ξ i μ =±1}=(1/2)±?, we obtain the lower bound 1+4?2(p?1) for the temperatureT c separating the trivial free regime where the overlap vector is zero from the nontrivial regime where it is nonzero. This lower bound is exact forp=2, or ε=0, or ε=±1/2. Forp=2 we identify an intermediate temperature region between T*=1?4?2 and Tc=1+4?2 where the overlap vector is homogeneous (i.e., all its components are equal) and nonzero.T * marks the transition to the nonhomogeneous regime where the components of the overlap vector are distinct. We conjecture that the homogeneous nonzero regime exists forp≥3 and that T*=max{1?4?2(p?1),0}.  相似文献   

3.
We derive model independent lower bounds for the sums of effective quark masses \(\bar m_u + \bar m_d \) and \(\bar m_u + \bar m_s \) . The bounds follow from the combination of the spectral representation properties of the hadronic axial currents two-point functions and their behavior in the deep euclidean region (known from a perturbative QCD calculation to two loops and the leading non-perturbative contribution). The bounds incorporate PCAC in the Nambu-Goldstone version. If we define the invariant masses \(\hat m\) by $$\bar m_i = \hat m_i \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^{{{\gamma _1 } \mathord{\left/ {\vphantom {{\gamma _1 } {\beta _1 }}} \right. \kern-\nulldelimiterspace} {\beta _1 }}} $$ and <F 2> is the vacuum expectation value of $$F^2 = \Sigma _a F_{(a)}^{\mu v} F_{\mu v(a)} $$ , we find, e.g., $$\hat m_u + \hat m_d \geqq \sqrt {\frac{{2\pi }}{3} \cdot \frac{{8f_\pi m_\pi ^2 }}{{3\left\langle {\alpha _s F^2 } \right\rangle ^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} }}} $$ ; with the value <α u F 2?0.04GeV4, recently suggested by various analysis, this gives $$\hat m_u + \hat m_d \geqq 35MeV$$ . The corresponding bounds on \(\bar m_u + \bar m_s \) are obtained replacingm π 2 f π bym K 2 f K . The PCAC relation can be inverted, and we get upper bounds on the spontaneous masses, \(\hat \mu \) : $$\hat \mu \leqq 170MeV$$ where \(\hat \mu \) is defined by $$\left\langle {\bar \psi \psi } \right\rangle \left( {Q^2 } \right) = \left( {{{\frac{1}{2}\log Q^2 } \mathord{\left/ {\vphantom {{\frac{1}{2}\log Q^2 } {\Lambda ^2 }}} \right. \kern-\nulldelimiterspace} {\Lambda ^2 }}} \right)^d \hat \mu ^3 ,d = {{12} \mathord{\left/ {\vphantom {{12} {\left( {33 - 2n_f } \right)}}} \right. \kern-\nulldelimiterspace} {\left( {33 - 2n_f } \right)}}$$ .  相似文献   

4.
A sample of 1.2× 106 Λ-hyperons was analyzed in order to detect the rare decay mode: Λ →pμ?¯v. The Λ-hyperons were produced by stoppingK ?-mesons in the 81 cm Saclay hydrogen bubble chamber at the CERN PS. We obtained for the branching ratio: $$\frac{{\Gamma {\text{(}}\Lambda \to p\mu ^ - \bar \nu )}}{{\Gamma {\text{(}}\Lambda \to {\text{all)}}}} = (1.4 \pm 0.5) \times 10^{ - 4} ,$$ based on 20 events, of which 6 have to be attributed to the background from the reaction $$\Lambda \to p\pi ^ - , \pi ^ - \to \mu ^ - \bar v.$$ The background was determined by a Monte Carlo calculation.  相似文献   

5.
The static hyperfine field ofB hf 4.2k (ErHo) = 739(18)T of a ferromagnetic holmium single crystal polarized in an external magnetic field of ± 0.48T at ~4.2K was used for integral perturbed γ-γ angular correlation (IPAQ measurements of the g-factors of collective states of166Er. The 1,200y 166m Ho activity was used which populates the ground state band and the γ vibrational band up to high spins. The results: $$\begin{gathered} g(4_g^ + ) = + 0.315(16) \hfill \\ g(6_g^ + ) = + 0.258(11) \hfill \\ g(8_g^ + ) = + 0.262(47)and \hfill \\ g(6_\gamma ^ + ) = + 0.254(32) \hfill \\ \end{gathered}$$ exhibit a significant reduction of the g-factors with increasing rotational angular momentum. The followingE2/M1 mixing ratios of interband transitions were derived from the angular correlation coefficients: $$\begin{gathered} 5_\gamma ^ + \Rightarrow 4_g^ + :\delta (810keV) = - (36_{ - 7}^{ + 11} ) \hfill \\ 7_\gamma ^ + \Rightarrow 6_g^ + :\delta (831keV) = - (18_{ - 2}^{ + 3} )and \hfill \\ 7_\gamma ^ + \Rightarrow 8_g^ + :\delta (465keV) = - (63_{ - 12}^{ + 19} ). \hfill \\ \end{gathered}$$ The results are discussed and compared with theoretical predictions.  相似文献   

6.
The cross section of the quasi-elastic reactions \(\bar v_\mu p \to \mu ^ + \Lambda (\Sigma ^0 )\) in the energy range 5–100 GeV is determined from Fermilab 15′ bubble chamber antineutrino data. TheQ 2 analysis of quasi-elastic Λ events yieldsM A=1.0±0.3 GeV/c2 for the axial mass value. With zero µΛ K 0 events observed, the 90% confidence level upper limit \(\sigma (\bar v_\mu p \to \mu ^ + \Lambda {\rm K}^0 )< 2.0 \cdot 10^{ - 40} cm^2 \) is obtained. At the same time, we found that the cross section of reaction \(\bar v_\mu p \to \mu ^ + \Lambda {\rm K}^0 + m\pi ^0 \) is equal to \(\left( {3.9\begin{array}{*{20}c} { + 1.6} \\ { - 1.3} \\ \end{array} } \right) \cdot 10^{ - 40} cm^2 \) .  相似文献   

7.
LetQ n β be the law of then-step random walk on ?d obtained by weighting simple random walk with a factore for every self-intersection (Domb-Joyce model of “soft polymers”). It was proved by Greven and den Hollander (1993) that ind=1 and for every β∈(0, ∞) there exist θ*(β)∈(0,1) and such that under the lawQ n β asn→∞: $$\begin{array}{l} (i) \theta ^* (\beta ) is the \lim it empirical speed of the random walk; \\ (ii) \mu _\beta ^* is the limit empirical distribution of the local times. \\ \end{array}$$ A representation was given forθ *(β) andµ β β in terms of a largest eigenvalue problem for a certain family of ? x ? matrices. In the present paper we use this representation to prove the following scaling result as β?0: $$\begin{array}{l} (i) \beta ^{ - {\textstyle{1 \over 3}}} \theta ^* (\beta ) \to b^* ; \\ (ii) \beta ^{ - {\textstyle{1 \over 3}}} \mu _\beta ^* \left( {\left\lceil { \cdot \beta ^{ - {\textstyle{1 \over 3}}} } \right\rceil } \right) \to ^{L^1 } \eta ^* ( \cdot ) . \\ \end{array}$$ The limitsb *∈(0, ∞) and are identified in terms of a Sturm-Liouville problem, which turns out to have several interesting properties. The techniques that are used in the proof are functional analytic and revolve around the notion of epi-convergence of functionals onL 2(?+). Our scaling result shows that the speed of soft polymers ind=1 is not right-differentiable at β=0, which precludes expansion techniques that have been used successfully ind≧5 (Hara and Slade (1992a, b)). In simulations the scaling limit is seen for β≦10?2.  相似文献   

8.
Three-charge-particle collisions with participation of ultra-slow antiprotons ( \(\overline {\rm {p}}\) ) is the subject of this work. Specifically we compute the total cross sections and corresponding thermal rates of the following three-body reactions: \(\overline {\rm p}+(e^+e^-) \rightarrow \overline {\rm {H}} + e^-\) and \(\overline {\rm p}+(\mu ^+\mu ^-) \rightarrow \overline {\rm {H}}_{\mu } + \mu ^-\) , where \(e^-(\mu ^-)\) is an electron (muon) and \(e^+(\mu ^+)\) is a positron (antimuon) respectively, \(\overline {\rm {H}}=(\overline {\rm p}e^+)\) is an antihydrogen atom and \(\overline {\rm {H}}_{\mu }=(\overline {\rm p}\mu ^+)\) is a muonic antihydrogen atom, i.e. a bound state of \(\overline {\rm {p}}\) and μ +. A set of two-coupled few-body Faddeev-Hahn-type (FH-type) equations is numerically solved in the framework of a modified close-coupling expansion approach.  相似文献   

9.
The inclusive η-momentum spectrum from \(\bar p\) annihilations at rest in liquid hydrogen was measured at LEAR. Branching ratios were obtained for $$\begin{gathered} p\bar p \to \eta \omega \left( {1.04_{ - 0.10}^{ + 0.09} } \right)\% ,\eta \rho ^0 \left( {0.53_{ - 0.08}^{ + 0.20} } \right)\% , \hfill \\ \pi a_2 \left( {8.49_{ - 1.10}^{ + 1.05} } \right)\% ,\eta \pi ^0 \left( {1.33 \pm 0.27} \right) \times 10^{ - 4} , \hfill \\ \end{gathered} $$ , and ηη(8.1±3.1)×10?5. An upper limit for \(p\bar p \to \eta \eta '\) of 1.8×10?4 at 95% CL was found. The ratio of the branching ratios is BR(η?)/BR(ηω)=0.51 ?0.06 +0.20 . For the ratio of branching ratios into two pseudoscalar mesons, we have BR(ηπ0)/BR(π0π0)=0.65±0.14, BR(ηη)/BR(π0π0), BR(η η )/BR(π0π0) at 95% CL, and BR(ηη)/BR(ηπ0).  相似文献   

10.
The E2/M1 multipole mixing parameters of cascade transitions inγ-vibrational bands of154Gd,166Er and168Er have been determined byγ-γ directional correlation measurements as: $$\begin{array}{l} \delta \left( {^{154} Gd\left( {3_\gamma ^ + \to 2_\gamma ^ + } \right)} \right) = - 4.3_{ + 2.1}^{ - 9.4} \\ \delta \left( {^{166} Er\left( {5_\gamma ^ + \to 4_\gamma ^ + } \right)} \right) = + 1.94_{ - 0.21}^{ + 0.23} \\ \end{array}$$ and $$\delta \left( {^{168} Er\left( {3_\gamma ^ + \to 2_\gamma ^ + } \right)} \right) = + 1.42_{ - 0.04}^{ + 0.04} $$ (with conversion data [15] taken into account) These data were used to deriveg(2+ γvib)?g(2+rot). The results, together withg-factors derived from direct measurements by IPAC and Mössbuer spectroscopy [10] or by use of transient fields [9, 31] exhibit a strong correlation between bothg-factors, i.e. ifg(2+rot) is largeg(2+ γvib) is small and vice versa. The most direct and most simple interpretation is the assumption of a more or less different density distribution of protons and neutrons in the nuclei.  相似文献   

11.
In a previous paper we investigated a class ofnonpeeling asymptotic vacuum solutions which were shown to admit finite expressions for the Winicour-Tamburino energy-momentum and angular momentum integrals. These solutions have the property that $$\psi _0 = O(r^{ - 3 - \in _0 } ), \in _0 \leqslant 2$$ and $$\psi _1 = O(r^{ - 3 - \in _1 } ), \in _1< \in _0 and \in _1< 1$$ withψ 2,ψ 3, andψ 4 having the same asymptotic behavior as they do for peeling solutions. The above investigation was carried out in the physical space-time. In this paper we examine the conformal properties of these solutions, as well as the more general Couch-Torrence solutions, which include them as a subclass. For the Couch-Torrence solutions $$\begin{gathered} \psi _0 = O(r^{ - 2 - \in _0 } ) \hfill \\ \psi _1 = O(r^{ - 2 - \in _1 } ), \in _1< \in _0 {\text{ }}and \in _1 \leqslant 2 \hfill \\ \end{gathered} $$ and , $$\psi _2 = O(r^{ - 2 - \in _2 } ),{\text{ }} \in _2< \in _1 {\text{ }}and \in _2 \leqslant 1$$ withψ 3 andψ 4 behaving as they do for peeling solutions. It is our purpose to determine how much of the structure generally associated with peeling space-times is preserved by the nonpeeling solutions. We find that, in general, a three-dimensional null boundary (?+) can be defined and that the BMS group remains the asymptotic symmetry group. For the general Couch-Torrence solutions several physically and/or geometrically interesting quantities  相似文献   

12.
Nuclear magnetic resonance has been observed on radioactive182Ta and183Ta oriented at low temperature in an Fe host, by detection of the change in spatial anisotropy of γ-rays emitted during nuclear decay. By measuring the resonant frequencies of183Ta in four different applied magnetic fields the nuclear magnetic moment and hyperfine field have been deduced. These are: $$|\mu \left( {{}^{183}Ta; I = \tfrac{\user2{7}}{\user2{2}}} \right)| = 2.28(3)\mu _{\rm N} and B_{hf} \left( {Ta\underline {Fe} at 0 K} \right) = - 67.2(1.3)T$$ . The spin of the ground state of182Ta has been determined asI=3 by comparing resonance results with those obtained in a thermal equilibrium nuclear orientation study. The ratio of the resonant frequencies observed for182Ta and183Ta at one applied field value yields a magnetic moment for the former of $$|\mu \left( {{}^{182}Ta; I = \user2{3}} \right)| = 2.91(3)\mu _{\rm N} $$ . The spin lattice relaxation time for183TaFe (0.12 at% Ta) at 18 mK in an applied field of 0.5 T has been found to be 40(10) s.  相似文献   

13.
We show that for most non-scalar systems of conservation laws in dimension greater than one, one does not have BV estimates of the form $$\begin{gathered} \parallel \overline V u(\overline t )\parallel _{T.V.} \leqq F(\parallel \overline V u(0)\parallel _{T.V.} ), \hfill \\ F \in C(\mathbb{R}),F(0) = 0,F Lipshitzean at 0, \hfill \\ \end{gathered} $$ even for smooth solutions close to constants. Analogous estimates forL p norms $$\parallel u(\overline t ) - \overline u \parallel _{L^p } \leqq F(\parallel u(0) - \overline u \parallel _{L^p } ),p \ne 2$$ withF as above are also false. In one dimension such estimates are the backbone of the existing theory.  相似文献   

14.
In this article we give a new observation of Pesin’s entropy formula, motivated from Mañé’s proof of (Ergod Theory Dyn Sys 1:95–102, 1981). Let \(M\) be a compact Riemann manifold and \(f:\,M\rightarrow M\) be a \(C^1\) diffeomorphism on \(M\) . If \(\mu \) is an \(f\) -invariant probability measure which is absolutely continuous relative to Lebesgue measure and nonuniformly-H \(\ddot{\text {o}}\) lder-continuous(see Definition 1.1), then we have Pesin’s entropy formula, i.e., the metric entropy \(h_\mu (f)\) satisfies $$\begin{aligned} h_{\mu }(f)=\int \sum _{\lambda _i(x)> 0}\lambda _i(x)d\mu , \end{aligned}$$ where \(\lambda _1(x)\ge \lambda _2(x)\ge \cdots \ge \lambda _{dim\,M}(x)\) are the Lyapunov exponents at \(x\) with respect to \(\mu .\) Nonuniformly-H \(\ddot{\text {o}}\) lder-continuous is a new notion from probabilistic perspective weaker than \(C^{1+\alpha }.\)   相似文献   

15.
In this paper, we consider the spread-out oriented bond percolation models inZ d ×Z withd>4 and the nearest-neighbor oriented bond percolation model in sufficiently high dimensions. Let η n ,n=1, 2, ..., be the random measures defined onR d by $$\eta _n (A) = \sum\limits_{x \in Z^d } {1_A (x/\sqrt n )1_{\{ (0,0) \to (x,n)\} } } $$ The mean of η n , denoted by $\bar \eta _n $ , is the measure defined by $$\bar \eta _n (A) = E_p [\eta _n (A)]$$ We use the lace expansion method to show that the sequence of probability measures $[\bar \eta _n (R^d )]^{ - 1} \bar \eta _n $ converges weakly to a Gaussian limit asn→∞ for everyp in the subcritical regime as well as the critical regime of these percolation models. Also we show that for these models the parallel correlation length $\xi (p)~|p_c - p|^{ - 1} $ asp?pc  相似文献   

16.
Consider the 1/2-Ising model inZ 2. Let σ j be the spin at the site (j, 0)∈Z 2 (j=0, ±1, ±2, ...). Let \(\{ X_n \} _{n = 0}^{ + \infty } \) be a random walk with the random transition probabilities such that $$P(X_{n + 1} = j \pm 1|X_n = j) = p_j^ \pm \equiv 1/2 \pm v(\sigma _j - \mu )/2$$ We show a case whereE[p j + E[p j ? ], but \(\mathop {\lim }\limits_{n \to \infty } X_n = - \infty \) is recurrent a.s.  相似文献   

17.
A high-precision measurement of the finestructure splitting in the circular 11→10 X-ray transition of \(\bar p^{208} Pb\) was performed. The experimental value of 1199(5) eV is in agreement with QED calculations. From that value the magnetic moment of the antiproton was deduced to be ?2.8005(90)μ nucl. With this result the uncertainty of the previous world average value was reduced by a factor of ≈2. A comparison with the corresponding quantity of the proton now yields: \({{\left( {\mu _p - \left| {\left\langle {\mu _{\bar p} } \right\rangle } \right|} \right)} \mathord{\left/ {\vphantom {{\left( {\mu _p - \left| {\left\langle {\mu _{\bar p} } \right\rangle } \right|} \right)} {\mu _p }}} \right. \kern-0em} {\mu _p }} = \left( { - 2.4 \pm 2.9} \right) \times 10^{ - 3} \) .  相似文献   

18.
For a one-dimensional Ising model with interaction energy $$E\left\{ \mu \right\} = - \sum\limits_{1 \leqslant i< j \leqslant N} {J(j - i)} \mu _\iota \mu _j \left[ {J(k) \geqslant 0,\mu _\iota = \pm 1} \right]$$ it is proved that there is no long-range order at any temperature when $$S_N = \sum\limits_{k = 1}^N {kJ\left( k \right) = o} \left( {[\log N]^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } \right)$$ The same result is shown to hold for the corresponding plane rotator model when $$S_N = o\left( {\left[ {{{\log N} \mathord{\left/ {\vphantom {{\log N} {\log \log N}}} \right. \kern-\nulldelimiterspace} {\log \log N}}} \right]} \right)$$   相似文献   

19.
Let H = ?Δ + V, where V is a real valued potential on ${\mathbb {R}^2}$ satisfying ${\|V(x)|\lesssim \langle x \rangle^{-3-}}$ . We prove that if zero is a regular point of the spectrum of H = ?Δ + V, then $${\| w^{-1} e^{itH}P_{ac}f\|_{L^\infty(\mathbb{R}^2)} \lesssim \frac{1}{|t|\log^2(|t|)} \| w f\|_{L^1(\mathbb{R}^2)},\,\,\,\,\,\,\,\, |t| \geq 2}$$ , with w(x) = (log(2 + |x|))2. This decay rate was obtained by Murata in the setting of weighted L 2 spaces with polynomially growing weights.  相似文献   

20.
A new beam-dump experiment has been performed at the CERN Super Proton Synchrotron using the CHARM neutrino detector. The instrumentation and the statistics have been significantly improved with respect to earlier experiments. For a neutrino energy above 20 GeV the asymmetry of the prompt muon-neutrino and electron-neutrino fluxes \([(v_\mu + \bar v_\mu ) - (v_e + \bar v_e )]/[(v_\mu + \bar v_\mu ) + (v_e + \bar v_e )]\) is found to be 0.20±0.10 (stat.)±0.05 (syst.), and the asymmetry of prompt antineutrino and neutrino fluxes for muonneutrinos \((v_\mu - \bar v_\mu )/(v_\mu + \bar v_\mu )\) is 0.02±0.16 (stat.)±0.02 (syst.) in agreement with our previous results. For the cross-section times branching ratio for charm production and semileptonic decay we obtain a value of \(\sigma \times BR\left[ {D(\bar D) \to v_e (\bar v_e ) X} \right] = 1.9 \pm 0.2 \pm 0.2\mu b\) per nucleon. We find no evidence forv τ orv x interactions. The \((v_\tau + \bar v_\tau )\) flux is less than 21% of the total prompt neutrino flux. We derive an improved limit on the branching ratio \(\pi ^0 \to v\bar v\) of 6.5×10?6, and as a verification of the universality of the neutral weak coupling we find \(g_{v_e \bar v_e } /g_{v_\mu \bar v_\mu } = 1.05_{ - 0.18}^{ + 0.15} \) .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号