首页 | 本学科首页   官方微博 | 高级检索  
    检索          
共有20条相似文献,以下是第1-20项 搜索用时 171 毫秒

1.  最小二乘支持向量机结合中红外光谱测定甲醇柴油甲醇含量  
   欧阳爱国  唐天义  周鑫  刘燕德《发光学报》,2016年第37卷第10期
   采用中红外光谱法对甲醇柴油的甲醇含量进行检测分析。首先,对采集到的原始光谱进行预处理(标准正则变换、多元散射校正、一阶微分、二阶微分、Savitzky-Goly平滑),采用偏最小二乘法和最小二乘支持向量机建立了甲醇柴油的甲醇含量预测模型,并比较了不同预处理方法对模型预测能力的影响。实验结果表明,LSSVM的建模效果最佳,其预测集相关系数R2为0.981 8,预测均方误差RMSEP为1.3917%(体积比)。因此,中红外光谱技术可用于甲醇柴油中甲醇含量的快速检测,且可以达到很好的效果。    

2.  黄酒糖度预测的可见-近红外光谱方法研究  被引次数:4
   刘飞  何勇  王莉《光学学报》,2007年第27卷第11期
   提出了用可见近红外光谱结合不同化学计量学方法预测黄酒糖度的新方法。用240个黄酒样本建模,60个样本进行预测。通过对光谱数据进行平滑、变量标准化及一阶导数等预处理,建立并比较了偏最小二乘法,小波变换与偏最小二乘法相结合,主成分分析与人工神经网络相结合以及主成分分析与最小二乘支持向量机相结合四种不同建模方法的预测精度,以相关系数r、预测标准差、偏差等为评判标准,得到黄酒糖度预测的最优模型为最小二乘支持向量机模型。该模型对黄酒糖度预测的相关系数为0.962、预测标准差为0.021、偏差为-0.001,获得了理想的预测精度。结果表明应用可见近红外光谱对黄酒糖度进行预测是可行的,且最小二乘支持向量机模型能得到最优的预测结果。    

3.  SPA-LS-SVM检测土壤有机质和速效钾研究  
   章海亮  刘雪梅  何勇《光谱学与光谱分析》,2014年第34卷第5期
   应用可见/短波近红外光谱分析测量土壤有机质和速效钾含量。光谱预处理包括平滑,标准归一化,多元散射校正和平滑结合一阶导数,以消除系统噪声和外部干扰,分别应用偏最小二乘和最小二乘支持向量机方法建立校正模型,模型的输入为基于连续投影算法得到的特征波长。比较显示基于连续投影算法得到的特征波长为输入的最小二乘支持向量机优于偏最小二乘法建模。模型评价指标由相关系数和预测均方误差表示。有机质的相关系数和预测均方误差分别0.860 2和2.98,速效钾为0.730 5和15.78。表明基于连续投影算法可见/短波近红外光谱利用最小二乘支持向量机建模,可以作为一个精确的土壤有机质和速效钾的测定方法。    

4.  基于中红外光谱技术检测茶叶中非法添加滑石粉的研究  
   李晓丽  张裕莹  何勇《光谱学与光谱分析》,2017年第37卷第4期
   研究傅里叶变化红外透射光谱(FTIR)结合化学计量学方法检测茶叶中非法添加滑石粉的可行性. 首先获取掺杂量不同的滑石粉(0.00,0.15,0.25,0.35,0.50,0.65,0.75,0.85,1.00,1.10,1.25,1.50 mg·g-1)210个茶叶样本光谱. 为了突显出光谱中的细微变化,采用Savitzky-Golay(SG) 平滑、标准化和标准正态变量(SNV)三种方法对原始光谱进行预处理. 其中,处理效果最好的是SNV方法. 随后探究光谱与掺杂量之间的定量关系,采用反向间隔偏最小二乘法(biPLS)和连续投影算法(SPA)的结合进行特征波数的选择,最终选出来5个特征波数. 并利用偏最小二乘回归算法(PLS)和最小二乘支持向量机算法(LS-SVM)建立基于这5个特征波数的回归模型. 其中LS-SVM模型具有更高的相关系数(RP=0.921)和更小的均方根误差(RMSEP=0.131),所以该模型具有更好的稳定性及更高的预测能力. 综上所述,红外光谱技术可以定量地检测出茶叶中非法添加的滑石粉.    

5.  基于拉曼光谱和最小二乘支持向量机的橄榄油掺伪检测方法研究  
   Zhang YQ  Dong W  Zhang B  Wang XP《光谱学与光谱分析》,2012年第32卷第6期
   为实现橄榄油中掺伪油类型的识别和掺伪量预测,对掺入葵花籽油、大豆油、玉米油的橄榄油共117个样品进行拉曼光谱检测,并用基于多重迭代优化的最小二乘支持向量机模型对掺入油的类型进行识别,综合识别率为97%。同时分别采用最小二乘支持向量机、人工神经网络模型、偏最小二乘回归建立橄榄油中葵花籽油、大豆油、玉米油含量的拉曼光谱定标模型,结果显示最小二乘支持向量机具有最优的预测效果,其预测均方根误差(RMSEP)在0.007 4~0.014 2之间。拉曼光谱结合最小二乘支持向量机可为橄榄油掺伪检测提供一种精确、快速、简便、无损的方法。    

6.  天然气消费量的偏最小二乘支持向量机预测  
   谭水莲  钟忠社  马村  尹勋刚  胡军浩《数学建模及其应用》,2014年第3卷第1期
   结合偏最小二乘法和支持向量机的优缺点,提出基于偏最小二乘支持向量机的天然气消费量预测模型。首先,利用偏最小二乘法确定影响天然气消费量的新综合变量,建立以新综合变量为输入,天然气消费量为输出的支持向量机模型,对天然气消费量进行了预测;然后,与多元回归、偏最小二乘回归、普通支持向量机做误差检验比较,验证该方法的可行性与正确性。结果表明,此天然气消费量预测模型具有较高的精确度和应用价值。    

7.  基于高光谱技术的灰霉病胁迫下番茄叶片SPAD值检测方法研究  被引次数:1
   谢传奇  何勇  李晓丽  刘飞  杜朋朋  冯雷《光谱学与光谱分析》,2012年第32卷第12期
   对灰霉病胁迫下番茄叶片中叶绿素含量(SPAD)的高光谱图像信息进行了研究。首先获取380~1 030nm波段范围内健康和染病番茄叶片的高光谱图像,然后基于ENVI软件处理平台提取高光谱图像中感兴趣区域的光谱信息,经平滑(Smoothing)、标准化(Normalize)等预处理后,建立了基于Normalize预处理的偏最小二乘回归(PLSR)和主成分回归(PCR)模型。再基于PLSR获得的4个变量建立反向传播神经网络(BPNN)和最小二乘-支持向量机(LS-SVM)模型。4个模型中,LS-SVM的预测效果最好,其决定系数R2为0.901 8,预测集均方根误差RMSEP为2.599 2。结果表明,基于健康和染病番茄叶片的高光谱图像响应特性检测叶绿素含量(SPAD)是可行的。    

8.  基于光谱技术和支持向量机的生鲜猪肉水分含量快速无损检测  被引次数:7
   张海云  彭彦昆  王伟  赵松玮  刘巧巧《光谱学与光谱分析》,2012年第32卷第10期
   为实现生鲜肉水分含量的快速无损检测,在波长350~1 700nm范围内采集生鲜猪肉98个样本的可见近红外反射光谱。经中值平滑滤波、多元散射校正和一阶微分复合预处理方法对原始光谱进行降噪处理。将样本数据随机分为训练集和测试集,以训练集交叉验证网格搜索法确定最佳惩罚参数,利用径向基核函数的支持向量机算法建立了支持向量机预测模型,并与偏最小二乘回归建模法进行比较。用径向基核函数的支持向量机算法所建模型对生鲜肉水分含量进行预测的结果为:训练集的预测相关系数Rc为0.96、标准差SEC为0.32,测试集的预测相关系数Rv为0.87、标准差SEV为0.67。实验结果证实用支持向量机所建模型适合于生鲜猪肉水分含量的无损快速检测。    

9.  中红外光谱对甲醇汽油甲醇含量检测研究  
   刘燕德  胡军  唐天义  张宇  欧阳玉平  欧阳爱国《光谱学与光谱分析》,2019年第2期
   甲醇汽油是一种清洁能源,甲醇汽油中甲醇的含量决定了汽油的性能。通过中红外光谱对甲醇汽油中甲醇含量进行定量检测和分析。首先,对采集的甲醇汽油原始中红外光谱进行平滑处理(smoothing)、多元散射校正(MSC)、基线校正(baseline)、归一化(normalization)等预处理,再建立PLS模型,对比选择最佳预处理方法,结果表明:在多元散射校正(MSC)处理后建立的PLS模型效果最好,模型的预测集相关系数r为0.918,预测均方根误差RMSEP为2.107。为进一步简化模型,提高预测精度,采用无信息变量消除(uninformative variable elimination,UVE)方法对波长进行筛选,将UVE波段筛选之后的作为模型的输入变量,采用偏最小二乘法(partial least squares,PLS)、主成分回归(principal components regression,PCR)和最小二乘支持向量机(least square support vector machine,LSSVM)三种方法分别建立甲醇汽油中甲醇含量的定量预测模型,并比较不同模型的预测效果和结果。结果表明,使用无信息变量消除可以较好提高数据的运算速度,其中,UVE-PLS模型建模效果最好,r和RMSEP分别为0.923和2.075。该实验表明中红外光谱检测甲醇汽油中甲醇含量是可行的并可以得到较好的效果;UVE是一种对甲醇汽油的中红外光谱非常有效的波段筛选方法,该模型的建立对石油化工领域具有较为重要的意义。    

10.  近红外光谱法检测乙醇柴油主要性能指标  
   欧阳爱国  唐天义  王海阳  刘燕德《中国光学》,2017年第10卷第3期
   乙醇柴油是柴油替代品的一种,它的使用越来越广泛,乙醇柴油品质由许多指标决定,采用传统方法检测这些指标不仅价格昂贵而且耗时长。近红外光谱技术是一种廉价、快速实时在线检测乙醇柴油品质的有效方法。本文采用近红外光谱技术结合最小二乘支持向量机检测了乙醇柴油的密度、粘度和乙醇含量,比较了线性和非线性校正技术(主成分回归、偏最小二乘回归和最小二乘支持向量机)对乙醇柴油品质的分析效果,同时也比较了不同预处理方法对预测模型能力的影响。实验结果表明,最小二乘支持向量机优于主成分回归和偏最小二乘回归模型,其对乙醇柴油密度、粘度、乙醇含量建模效果最优,相关系数分别是0.995 8、0.995 7和0.995 3;预测均方根误差分别为0.000 68、0.011 3和0.571 4。    

11.  基于激光近红外的稻米油掺伪定性-定量分析  被引次数:1
   涂斌  宋志强  郑晓  曾路路  尹成  何东平  亓培实《光谱学与光谱分析》,2015年第6期
   该文主要研究激光近红外光谱分析技术结合化学计量学方法对稻米油掺伪进行定性‐定量分析。分别将大豆油、玉米油、菜籽油、餐饮废弃油掺入稻米油中,按照不同质量比配置189个掺伪油样,利用激光近红外光谱仪采集光谱;对采集的稻米油掺伪图谱数据进行多元散射校正(M SC )、正交信号校正(OSC )、标准正态变量变换和去趋势技术联用算法(SNV_DT )三种不同预处理并与原始数据进行比较。采用连续投影算法(SPA )对经过预处理的光谱数据进行特征波长提取,应用支持向量机分类(SVC )方法建立稻米油掺伪样品的定性分类校正模型,选择网格搜索算法对模型参数组合(C , g)进行寻优,确定最优参数组合。另采用后向间隔偏最小二乘法(BiPLS)和SPA对预处理后的光谱数据进行特征波长提取,分别应用偏最小二乘法(PLS)和支持向量机回归(SVR)建立掺伪油含量的定量校正模型,并选用网格搜索算法对SVR模型参数组合(C , g)进行寻优,建立最优参数模型。研究表明,建立的SVC模型预测集和校正集的准确率分别达到了95%和100%;对比SVR和PLS方法建立的数学模型对稻米油中掺杂油脂的含量的预测,两种方法均能够实现含量预测,SVR模型的预测能力更好,相关系数 R高于0.99,均方根误差(MSE)低于5.55×10-4,预测精度高。结果表明,采用激光近红外光谱分析技术可以实现稻米油掺伪的定性‐定量分析,同时为其他油脂的掺伪分析提供了方法。    

12.  基于SVM算法的近红外光谱技术在鱼糜水分和蛋白质检测中的应用  
   王小燕  王锡昌  刘源  董若琰《光谱学与光谱分析》,2012年第32卷第9期
   采用支持向量机(support vector machine,SVM)建立了鱼糜样品中水分和蛋白质含量的近红外光谱校正模型,并采用独立样本集进行了预测。光谱数据经间隔两点一阶导数(DB1G2)、标准正态变换(SNV)、多元散射校正(MSC)相结合的方法预处理后,用偏最小二乘(PLS)降维处理,取前15个投影变量为自变量。获得水分模型的校正相关系数Rc、预测相关系数Rv、定标标准差SEE、预测标准差SEP;蛋白质模型的校正相关系数Rc、预测相关系数Rv、定标标准差SEE、预测标准差SEP,有较好的预测准确性。基于SVM算法的近红外光谱技术可用于鱼糜水分和蛋白质含量的快速检测。    

13.  拉曼光谱技术的汽油组分含量测定  
   张冰  邓之银  郑靖奎  王晓萍《光谱学与光谱分析》,2015年第6期
   为实现汽油中所含组分含量的快速测定,对93号、97号汽油,芳烃、烯烃、苯、甲醇、乙醇等几类物质,以及往汽油中添加几类物质后的410个汽油混合物进行拉曼光谱检测。将获取的原始拉曼光谱经过有效波段提取、平滑去噪、基线扣除、数据归一化等一系列预处理过程,最终提取出每个汽油混合样品光谱中所含的33个特征峰信息,依据现行的国标检测方法,以气相色谱法测定的汽油中各组分含量值为基础,结合化学计量学多重回归分析方法,建立了汽油组分含量测定模型。经过比较,使用多输出最小二乘支持向量回归机(MLS‐SVR)建立的模型优于偏最小二乘(PLS)模型。MLS‐SVR模型对汽油中芳烃、烯烃、苯、甲醇、乙醇测定精度均较好,预测均方根误差(RMSEP)分别为0.27%,0.30%,0.16%,0.17%,0.12%;相应的相关系数( r)为0.9992,0.9984,0.9985,0.9926,0.9968。通过对未知混合汽油样品的测定,证明了该方法具有较好的推广预测精度,预测均方根误差不超过0.5%,能够满足工业中的测量需求。拉曼光谱结合多输出最小二乘支持向量机为汽油组分测定提供了一种高精确、快捷、方便的测定方法。    

14.  高光谱成像的土壤剖面水分含量反演及制图  被引次数:2
   吴士文  王昌昆  刘娅  李燕丽  刘杰  徐爱爱  潘恺  李怡春  张芳芳  潘贤章《光谱学与光谱分析》,2019年第9期
   传统土壤水分的获取方法仅可获得离散的土壤水分点位数据,难以获得剖面上精细且连续的水分含量分布图。研究了野外条件下利用近红外高光谱(882~1 709 nm)成像反演剖面土壤水分含量(SMC),并实现精细制图的可行性。研究剖面位于江苏省东台市,我们利用近红外高光谱成像仪对剖面进行了5天原位连续观测,共采集了280个土样用于烘干法测定SMC。原始高光谱图像经数字量化值(DN)校正、黑白校正、拼接、几何校正、剪切和掩膜等一系列预处理后,提取各采样点的平均光谱反射率。提取光谱(Raw)经吸光度[LOG_(10)(1/R)], Savitzky-Golay平滑(SG)、一阶微分(FD)、二阶微分(SD)、多元散射校正(MSC)和标准正态变量(SNV)转换后,采用偏最小二乘回归(PLSR)和最小二乘支持向量机(LS-SVM)方法建立SMC预测模型,并对比分析不同光谱预处理方法与建模方法组合条件下SMC的预测精度。结果表明,光谱反射率随SMC增加逐渐降低,不同光谱预处理方法的预测精度有所差异,除MSC方法外,同一光谱预处理方法的LS-SVM模型预测精度均高于PLSR模型,并且基于LOG_(10)(1/R)光谱的LS-SVM模型对SMC预测精度最高,其建模集的决定系数(R■)和均方根误差(RMSE_c)分别为0.96和0.65%,预测集的决定系数(R■)、均方根误差(RMSE_p)和相对分析误差(RPD_p)分别为0.88, 1.05%和2.88。利用最优模型进行剖面SMC的高空间分辨率精细制图,通过比较SMC反演图中提取的预测值与实测值关系发现预测精度较高(R~2:0.85~0.95,RMSE:0.94%~1.02%),且两者在剖面中的变化趋势基本一致,说明SMC反演图不仅能很好地反映出土壤水分在整个剖面中毫米级的含量分布信息,也可反映出同一位置处不同天数间的含量差异。因此,利用近红外高光谱成像结合优化的预测模型,能够实现土壤剖面SMC的定量预测及精细制图,有助于快速、有效监测田间剖面土壤水分状况。    

15.  近红外光谱法在红曲菌固态发酵过程参数检测中的应用  
   黄常毅  范海滨  刘飞  许赣荣  彭秀辉《分析测试学报》,2014年第1期
   研究了近红外光谱技术快速检测红曲菌固态发酵过程参数水分含量和pH值的可行性。针对传统基于间隔策略波长选择方法忽略非线性因素的缺点,采用一种基于最小二乘支持向量机(Least squares support vector machines,LS-SVM)非线性模型的波长筛选算法:联合区间最小二乘支持向量机(Synergy interval least squares support vector machines,siLS-SVM),并将新算法与相关系数法、iPLS算法、siPLS算法对比。实验结果显示,联合siLS-SVM算法和LS-SVM模型取得了最好的预测效果,水分含量、pH值的预测集相关系数(R p)分别为0.962 1、0.976 1,预测均方根误差(RMSEP)分别为0.012 9、0.145 2,表明模型具有较好的拟合度和预测性能。应用近红外光谱法进行红曲菌固态发酵过程的水分含量和pH值的快速检测可行,该方法为进一步实现其过程参数的在线检测及发酵条件优化提供了技术基础。    

16.  近红外光谱法在红曲菌固态发酵过程参数检测中的应用  
   黄常毅  范海滨  刘飞  许赣荣  彭秀辉《分析测试学报》,2014年第33卷第1期
   研究了近红外光谱技术快速检测红曲菌固态发酵过程参数水分含量和pH值的可行性。针对传统基于间隔策略波长选择方法忽略非线性因素的缺点,采用一种基于最小二乘支持向量机(Least squares support vector machines,LS-SVM)非线性模型的波长筛选算法:联合区间最小二乘支持向量机(Synergy interval least squares support vector machines,siLS-SVM),并将新算法与相关系数法、iPLS算法、siPLS算法对比。实验结果显示,联合siLS-SVM算法和LS-SVM模型取得了最好的预测效果,水分含量、pH值的预测集相关系数(Rp)分别为0.962 1、0.976 1,预测均方根误差(RMSEP)分别为0.012 9、0.145 2,表明模型具有较好的拟合度和预测性能。应用近红外光谱法进行红曲菌固态发酵过程的水分含量和pH值的快速检测可行,该方法为进一步实现其过程参数的在线检测及发酵条件优化提供了技术基础。    

17.  矿区复垦农田土壤重金属含量的高光谱反演分析(英文)  被引次数:3
   谭琨  叶元元  杜培军  张倩倩《光谱学与光谱分析》,2014年第12期
   以矿区复垦农田土壤为研究对象,利用实验室获取的土壤重金属元素砷(As)、锌(Zn)、铜(Cu)、铬(Cr)和铅(Pb)的含量与土壤可见近红外高光谱数据建立重金属元素含量的定量估算模型。为了保证模型预测的精度和稳定性,首先,对原始光谱数据进行平滑处理,并进行光谱变换,即:一阶导数,标准正态变量变换及连续统去除变换;然后,通过相关性分析提取不同变换光谱的特征波段;最后,将最小二乘支持向量机与传统的多元线性回归和偏最小二乘回归方法的结果相比较。研究表明:(1)以不同变换光谱数据建立反演模型均有较好的稳定性并达到一定精度,其中以最小二乘支持向量机方法优于偏最小二乘回归优于多元线性回归模型(除少数几个情况外);(2)从不同光谱变换数据中提取的光谱特征对反演模型结果有一定影响,其中以连续统去除和标准正态变量变换建模结果较好,一阶导数变换稍差。因此,利用高光谱遥感技术来定量估算土壤重金属含量是可行的,而且,必要的光谱预处理对提高估算模型的精度很有帮助。    

18.  基于可见-近红外光谱变量选择的荒漠土壤全磷含量估测研究  
   杨爱霞  丁建丽  李艳红  邓凯《光谱学与光谱分析》,2016年第3期
   以新疆艾比湖湿地保护区采集的300个荒漠土壤样品为研究对象,利用ASD Field Spec(R)3 HR光谱仪获取的土壤可见-近红外光谱数据以及化学分析获取的土壤全磷数据为数据源,将原始光谱数据经过卷积平滑、标准正态变量变换以及一阶微分预处理后,采用蚁群-遗传结合区间偏最小二乘法提取荒漠土壤全磷含量特征波长,构建土壤全磷含量偏最小二乘回归预测模型;并与全谱偏最小二乘、蚁群-区间偏最小二乘、遗传-偏最小二乘模型进行比较.结果表明:经蚁群-区间偏最小二乘法筛选后,荒漠土壤全磷特征波段为500~700,1 101~1 300,1 501~1 700,1 901~2 100 nm;进一步采用遗传-区间偏最小二乘法进行变量选择,得到共线性最小的13个有效波长,分别为:1 621,546,1 259,573,1 572,1 527,564,1 186,1 988,1 541,2 024,1 118和1 191nm.建模方法比较显示,采用蚁群-遗传结合区间偏最小二乘法选择的特征变量,建立的模型精度最高,其次是遗传算法、蚁群算法和全光谱.蚁群-遗传结合区间偏最小二乘法建立的土壤全磷含量的模型,效验证均方根误差RMSECV以及预测集均方根误差RMSEP分别为0.122和0.108mg· g-1,效验证相关系数Rc以及预测集的相关系数Rp分别为0.535 7,0.555 9.因此,经过卷积平滑、标准正态变量变换以及一阶微分预处理,并利用蚁群-遗传结合区间偏最小二乘法建立的模型不仅简单,而且具有较高的预测精度和较好的稳健性,可以估算荒漠土壤全磷含量.    

19.  基于改进ABC的LSSVM氧化还原电位预测研究  
   李伟  南新元《应用声学》,2014年第22卷第12期
   针对氧化还原电位对于生物氧化提金预处理过程的控制和优化具有重要作用,提出了一种基于改进的ABC算法优化最小二乘支持向量机的预测方法。该算法是在标准人工蜂群算法的基础上,通过引入欧氏距离,使得在一定邻域内观察蜂采用不同于雇佣蜂的搜索策略。采用改进的ABC算法优化最小二乘支持向量机的参数,取得最优解并赋予最小二乘支持向量机进行预测。以新疆某金矿的生产数据进行仿真研究,结果表明:基于改进的ABC算法优化的最小二乘支持向量机具有较高的预测精度,该方法能使模型取得较好的预测效果。    

20.  脐橙糖度近红外光谱在线检测数学模型优化研究  被引次数:3
   Sun XD  Hao Y  Gao RJ  Ouyang AG  Liu YD《光谱学与光谱分析》,2011年第31卷第5期
   目的是优化脐橙糖度近红外光谱在线检测数学模型,提高检测精度.在700.28~933.79 nm光谱范围内,根据建模集样品在不同波长处的变异系数,选择基准波长点,计算样品的反射比光谱.吸光度和反射比光谱,经不同光谱预处理后,分别采用偏最小二乘法(PLS)和最小二乘支持向量回归法(LSSVR),建立脐橙糖度近红外光谱在线检测数学模型.采用30个未参与建模的脐橙样品评价模型的性能,经比较,采用一阶微分处理后的反射比光谱建立的LSSVR模型预测效果最优,模型预测相关系数为0.85,预测均方根误差为0.41.Brix.实验结果表明基准波长点、一阶微分和LSSVR相结合的优化方法在提高脐橙糖度近红外光谱在线检测精度方面具有可行性.    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号