首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of Lévy flights on fluctuation-driven transport in time independent periodic potentials with broken spatial symmetry is studied. Two complementary approaches are followed. The first one is based on a generalized Langevin model describing overdamped dynamics in a ratchet type external potential driven by Lévy white noise with stability index α in the range 1<α<2. The second approach is based on the space fractional Fokker-Planck equation describing the corresponding probability density function (PDF) of particle displacements. It is observed that, even in the absence of an external tilting force or a bias in the noise, the Lévy flights drive the system out of the thermodynamic equilibrium and generate an up-hill current (i.e., a current in the direction of the steeper side of the asymmetric potential). For small values of the noise intensity there is an optimal value of α yielding the maximum current. The direction and magnitude of the current can be manipulated by changing the Lévy noise asymmetry and the potential asymmetry. For a sharply localized initial condition, the PDF of staying at the minimum of the potential exhibits scaling behavior in time with an exponent bigger than the −1/α exponent corresponding to the force free case.  相似文献   

2.
Measurements of conduction currents were carried out on polyethylene terephthalate semi crystalline PET in an electrical field region varying from 40 to 260 V/μm. Various mechanisms of conduction (Richardson-Schottky, Fowler-Nordheim, Poole-Frenkel, space charge limited current SCLC, Hopping), can cause non-linear characteristics. To highlight the mechanism responsible for conduction in the PET, we used the slope of the experimental curve Log(J)=f(E) in the region 150<E<260 V/μm, to calculate the value of the dielectric permittivity. The characteristic curve Log(J)=f(1/T) shows that the Poole-Frenkel mechanism of conduction is prevalent in the semi crystalline PET. The characteristic J=f(E) for various thicknesses shows that the field threshold increases with the thickness.  相似文献   

3.
We have computed the energy ΔE, the momentum ΔP and the angular momentum ΔJ of gravitational radiation induced by a particle of mass μ and angular momentum μLz plunging into a Schwarzschild black hole of mass M (?μ). It is found that the maximum value of ΔP is 4.5 × 10?2 (μ/M) μc, ΔE/ΔJ ≈ 0.15c/(GM/c2), and a rotating ring plunging into a black hole emits less energy than a non-rotating one.  相似文献   

4.
Low spin states (J < j) for transitional nuclei with a typical decoupling spectrum built on a single particle level j show systematic discrepancies between theory and experiment. To account for the discrepancies the decoupling scheme is extended to include also strong coupling. Excellent agreement including that for the low spin states is found in 187Ir to which this theory is applied.  相似文献   

5.
Isothermal magnetization M(t) in nanocrystalline single-phase B1 MoCy encapsulated in multiwall carbon nanocages is studied within the time window of 100 < t < 5000 s. The current density J exhibits a linear logarithmic time decay. The effective activation energy Ueff increases linearly with increasing temperature T, and decreases linearly with increasing J. The behaviors of J(t), Ueff(T), and Ueff(J) can be described by the Anderson–Kim flux-creep model for thermally activated motion of uncorrelated vortices or vortex bundles over a net potential barrier Ueff. The slower relaxation of current density above the broad peak field in the isothermal magnetization curves suggests that the peak is a result of vortex dynamics.  相似文献   

6.
The properties of discontinuous aligned pinning centers (PCs) created by high-energy heavy-ions are compared for bulk melt-textured and coated conductor HTS. Properties of PCs, which increase Jc (pinning potential and entanglement), and negative properties which decrease Jc (e.g., decreased Tc and percolation paths) are evaluated. Mechanisms are proposed to explain the very large increases in Jc resulting from multiple-in-line-damage (MILD) compared to continuous columnar pinning centers (CCPC). In particular, a mechanism which results in fluxoid entanglement, even for parallel (unsplayed) PCs, is discussed. The same mechanism is found to also account for restoration of much of the pinning potential expected to be lost due to the gaps in MILD PCs. It also accounts for the fact that at high fluence, Jc increases as fluence is increased, instead of decreasing as expected. The very low self-field in coated conductor permits separation of the negative and positive effects of PCs. It is found that parameters developed to quantify the negative effects in bulk melt-textured YBCO, by 63 GeV U238 ions, successfully describe damage to 2.1 μm thick coated conductor by 1 GeV Ru44 ions. Coated conductor at 77 K and self-field is generally known to have Jc about 100 times that of melt-textured YBCO. However, at 77 K and applied field of 1 T, when both forms of HTS are processed with comparable numbers of near-optimum MILD PCs, the difference in Jc is reduced to a factor of 1.3–2. Whereas Jc for melt-textured YBCO increased sharply, by a factor of up to 16.8 for high-fluence MILD PCs, Jc in coated conductor increased by a smaller factor of 2.5–3.0. Nevertheless, 2.1 μm thick coated conductor, with near-optimum MILD PCs, exhibits Jc = 543 kA/cm2 at 77 K and applied field of 1.0 T, and Ic = 114 A/cm-width of conductor. This is the highest value we find in the literature. The phenomenology developed indicates that for optimum MILD PCs in coated conductor, Jc  700 ± 70 kA/cm2 should be achievable at 77 K, 1.0 T.  相似文献   

7.
We examine the possibility that the recently observed suppression of the rate for KLμ+μ is due to the three-pion intermediate state with an anomalously large amplitude for 3π(JP = 0)→μ+μ. We do not explicitly introduce new dynamics, but merely parameterize the empirically required enhancement in the simplest phenomenological manner. The question is then raised as to whether this interaction would be presently observable in other experiments where muons are studied in the vicinity of hadrons, in particular muon-proton scattering and muonic atoms. We also raise the same question with respect to an alternative possibility, namely that an anomalously large amplitude for ππ(JP=0+)→μ+μ give rise to KSμ+μ. The possible size and nature of effects in other experiments are thus estimated.  相似文献   

8.
The MgB2 coated superconducting tapes have been fabricated on textured Cu (0 0 1) and polycrystalline Hastelloy tapes using coated conductor technique, which has been developed for the second generation high temperature superconducting wires. The MgB2/Cu tapes were fabricated over a wide temperature range of 460-520 °C by using hybrid physical-chemical vapor deposition (HPCVD) technique. The tapes exhibited the critical temperatures (Tc) ranging between 36 and 38 K with superconducting transition width (ΔTc) of about 0.3-0.6 K. The highest critical current density (Jc) of 1.34 × 105 A/cm2 at 5 K under 3 T is obtained for the MgB2/Cu tape grown at 460 °C. To further improve the flux pinning property of MgB2 tapes, SiC is coated as an impurity layer on the Cu tape. In contrast to pure MgB2/Cu tapes, the MgB2 on SiC-coated Cu tapes exhibited opposite trend in the dependence of Jc with growth temperature. The improved flux pinning by the additional defects created by SiC-impurity layer along with the MgB2 grain boundaries lead to strong improvement in Jc for the MgB2/SiC/Cu tapes. The MgB2/Hastelloy superconducting tapes fabricated at a temperature of 520 °C showed the critical temperatures ranging between 38.5 and 39.6 K. We obtained much higher Jc values over the wide field range for MgB2/Hastelloy tapes than the previously reported data on other metallic substrates, such as Cu, SS, and Nb. The Jc values of Jc(20 K, 0 T) ∼5.8 × 106 A/cm2 and Jc(20 K, 1.5 T) ∼2.4 × 105 A/cm2 is obtained for the 2-μm-thick MgB2/Hastelloy tape. This paper will review the merits of coated conductor approach along with the HPCVD technique to fabricate MgB2 conductors with high Tc and Jc values which are useful for large scale applications.  相似文献   

9.
We consider the zero-temperature behavior of a disordered array of quantum rotators given by the finite-volume Hamiltonian: $$H_\Lambda = - \mathop \Sigma \limits_{x \in \Lambda } \frac{{h(x)}}{2}\frac{{\partial ^2 }}{{\partial \varphi (x)^2 }} - J\mathop \Sigma \limits_{\left\langle {x,y} \right\rangle \in \Lambda } \cos (\varphi (x) - \varphi (y))$$ , wherex,yZ d , 〈,〉 denotes nearest neighbors inZ d ;J>0 andh={h(x)>0,xZ d } are independent identically distributed random variables with common distributiondμ(h), satisfying ∫h dμ(h)<∞ for some δ>0. We prove that for anym>0 it is possible to chooseJ(m) sufficiently small such that, if 0<J<J(m), for almost every choice ofh and everyxZ d the ground state correlation function satisfies $$\left\langle {\cos (\varphi (x) - \varphi (y))} \right\rangle \leqq C_{x,h,J} e^{ - m\left| {x - y} \right|} $$ for allyZ d withC x,h,J <∞.  相似文献   

10.
Computed current-voltage (J–V) dependencies of heterogeneous (powder) semiconductor systems reveal an anomalous dependence between the constant-voltage current J and the uncompensated donor (acceptor) concentration N. Over a range of N(N1 < n < N2) of approximately one decade, J decreases by as much as four decades with increasing N. For N > N2, the grain Schottky barrier thickness d is less than the grain half-width l/2, the grain surface potential Vs is almost independent of N and the J–V dependence is superlinear. For N1 < N < N2, d > l/2, Vs decreases linearly with N, J increases strongly with decreasing N and the J–V dependence is superlinear. For N < N1, d > l/2. Vs ? Vth ( = kT/q) and JNV. The phenomenon is used to account for some observed J–V dependencies with column II-chalcogenide and ZnO powder semiconductor systems (electro-optic displays, electrophotographic receptors and heterogeneous catalysts).  相似文献   

11.
We have computed the spectrum and the energy of gravitational radiation induced by a test particle of mass μ falling along the z-axis into a Kerr black hole of mass M(? μ) and angular momentum Ma(a < M). It is found that the total energy radiated is 0.0170 0.0170 μc2μM when α = 0.99M, which is 1.65 times larger than that when α = 0, i.e., the Schwarzschild black hole case.  相似文献   

12.
Line intensities, self- and air-broadened linewidths, pressure-induced shifts, and collisional narrowing coefficients were measured from 2 ? J′ ? 32 in the P branch of the O2A-band (12 975-13110 cm−1) utilizing Galatry line profiles. Spectra were recorded using the frequency-stabilized cavity ring-down spectrometer located at NIST, Gaithersburg, MD with a spectral resolution <0.0001 cm−1 and noise-equivalent absorption coefficient of 6 × 10−8 m−1 Hz−1/2. Line intensities, obtained from calibrated gas samples for 2 ? J′ ? 32, are ∼1% lower than the values in current spectroscopic databases. At higher J (18 ? J′ ? 32), the measured air- and self- broadened half widths are up to 20% lower than the extrapolated values given in HITRAN 2004, while corresponding half-widths for 2 ? J′ ? 15 are in better agreement. Available self-broadened half widths are fitted to empirical expressions with an rms of 0.8%. We discuss the implications of our results for accurate remote sensing of surface pressure and photon path length distributions.  相似文献   

13.
We have computed the energy ΔE, the momentum ΔP and the angular momentum ΔJ of gravitational radiation induced by a particle of mass μ and of zero orbital angular momentum plunging in the θ = π/2 plane into a Kerr black hole of mass M(?μ) and angular momentum Ma. It is found that ΔE for a = 0.99M is 4.45 × 10-22/M)c2, which is 4.27 times larger than that for the a = 0 case.  相似文献   

14.
Vortices in magnetic superconductors polarize spins nonuniformly and repolarize them when moving. At a low spin relaxation rate and at low bias currents, vortices carrying magnetic polarization clouds become polaron-like and their velocities are determined by the effective drag coefficient that is significantly bigger than the Bardeen-Stephen (BS) one. As the current increases, vortices release polarization clouds and the velocity as well as the voltage in the I–V characteristics jump to values corresponding to the BS drag coefficient at a critical current J c . The nonuniform components of the magnetic field and magnetization drop as the velocity increases, resulting in weaker polarization and a discontinuous dynamic dissociation depinning transition. Experimentally, the jump shows up as a depinning transition and the corresponding current at the jump is the depinning current. As the current decreases, on the way back, vortices are retrapped by polarization clouds at the current J r < J c . As a result, the polaronic effect suppresses dissipation and enhances the critical current. Borocarbides (RE)Ni2B2C with a short penetration length and highly polarizable rare earth spins seem to be optimal systems for a detailed study of vortex polaron formation by measuring I–V characteristics. We also propose to use a superconductor-magnet multilayer structure to study polaronic mechanism of pinning with the goal to achieve high critical currents. The magnetic layers should have large magnetic susceptibility to enhance the coupling between vortices and magnetization in magnetic layers while the relaxation of the magnetization should be slow. For Nb and a proper magnet multilayer structure, we estimate the critical current density J c ~ 109 A/m2 at the magnetic field B ≈ 1 T.  相似文献   

15.
Hallconstant, conductivity and Hall mobility of ZnO crystals were measured as function of temperature (4 °K < T < 370 °K) and orientation. Value and anisotropy of mobility can be explained (50 °K < T < 370 °K) by polar optical scattering, deformation potential sc., piezoelectric sc. and sc. by ionized impurities. The anisotropy of mobility is caused only by piezoelectric sc. Maximum values of μH are reached for μHc, with 2400 cm2/V sec at 40 °K and for μH ¦ c with 1350cm2/Vsec at 60 °. Below 50 °K Hallconstant, conductivity and Hall mobility are influenced by impurity band conduction processes. The crystals have impurity concentration in the 1016 cm?3 range, but they show different donor activation energies depending on growth conditions: Type I: 38,4 meV (50 °K < T < 100 °K) and Type II: 20,3 meV (50 °K < T < 100 °K) and 6 meV (25 °K < T < 50 °K).  相似文献   

16.
Rotational spectrum of jet-cooled 9-cyanoanthracene has been observed in the 4-8 GHz region with a Fourier-transform microwave spectrometer. The present observation of 25 low-J transitions with J′′?11 has confirmed the previous results on the rotational constants of the ground state determined by rotational coherence spectroscopy [J. Phys. Chem. A. 105 (2001) 1131] and provided the values with significantly improved precision. An accurate set of hyperfine splitting constants is also reported for the 14N nuclear quadrupole coupling. The electric dipole moment was determined from Stark effect measurements on several split components: μb(=μ)=4.406(7) D.  相似文献   

17.
《Current Applied Physics》2015,15(10):1262-1270
Powder mixtures of MgB2 and B4C with composition ((MgB2) + (B4C)x, x = 0.005, 0.01, 0.03) were consolidated by Spark Plasma Sintering at 1150 °C for 3 min. The average particle size of B4C raw powder was relatively high of 4 μm. Despite this, it is shown that processing processes are fast and, as in the case of the in-situ routes, for our ex-situ method carbon substitutes for the boron in the crystal lattice of MgB2. Specifics of microstructure are discussed based on electron microscopy observations. Carbon substitution and microstructure contribute to enhancement of the critical current density Jc at high magnetic fields and of the irreversibility field Hirr. Samples are shown to be in the point pinning limit with some tendency toward the grain boundary pinning depending on B4C doping amount and temperature. An optimum composition is found for x = 0.01: for this sample, at 20 K, a Jc of 100 A/cm2 is obtained at 5.35 T. This value is higher than for the pristine MgB2 sample and for an optimum ex-situ nano-SiC-doped sample obtained for the same SPS processing conditions.  相似文献   

18.
We show that a pomeron (P) trajectory with αP(t) ≈ 1.07 + 0.22t provides a simple and satisfactory fit to π±p and K±p elastic scattering data (as well as pp and pp considered in an earlier publication) for |t| < 1.2 GeV2, including the rising total cross sections. The destructive term needed to explain the diffraction minimum in pp may be explained as a weak P ? P cut effect provided that the Gribov vertices are given suitable structure, and the prediction is then made that similar minima should be observed in meson-baryon scattering at FNAL somewhere in the region 1.5 < |t| < 2.5 GeV2. The P ? P cut does not seem to be related (at least directly) to the unitarization effects which must eventually make σtot ~ log2s (but not until s > 108GeV2). Thus the “effective” J-plane singularity structure, at currently available energies seems to be much simpler than it can be asymptotically.  相似文献   

19.
Using synchrotron-based stroboscopic photoemission electron microscopy with X-ray circular dichroism as contrast method, we have investigated the high-frequency response of permalloy thin-film structures. Standing precessional modes have been studied in rectangular elements (16 × 32 μm2, 10 nm thick) with a high time resolution of about 15 ps in the low-α mode of BESSY. With increasing amplitude of the applied magnetic AC field the particle is driven from an initial symmetric Landau flux-closure state into an asymmetric state and finally into a single-domain state magnetized perpendicular to the applied field HAC. The electromagnetic microwave field thus can induces a net magnetization in a small particle. This behaviour is a result of the constant throughput of energy (open system) that allows for an increase of local order, contrary to the usual increase on entropy in closed systems. A propagating spinwave in an ultrathin elliptical particle (semi axes 6 × 12 μm2, 3 nm thick) was observed in a snapshot series with 25 ps time increment. The phase front of the spinwave with large precessional angle (bright contrast) propagates with a velocity of 8100 m/s, i.e. much faster than typical domain wall velocities in permalloy.  相似文献   

20.
Level densities for fixedJ π and the exciton number are evaluated for closed shell nuclei40Ca and208Pb. The single particle spectra and wave functions are generated by Woods-Saxon potentials. The effects of the residual interaction are taken into account statistically by the method of generating function and Grassmann integral. The matrix elements for the residual interaction are assumed to be random variables with Gaussian distributions whose second moments are calculated by using a zero range interaction. The second moments are evaluated for fixedJ π by ignoring the Pauli principle between active nucleons and the spectator. This approximation is shown numerically to be very good. The partial level densities are calculated using the second moments as well as independent particle model spectra. The resulting level densities spread over wider energy ranges, have a smoother energy dependence and are enhanced at low energies compared with the independent particle model densities, although the total level densities do not differ by much.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号