首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A contour deformation method (CDM) in the complex momentum plane has been successfully extended and implemented to probe resonances in atomic and molecular systems. Specifically, solution of the Schrödinger equation is performed in momentum space with momentum deformed on a contour in the complex plane. The bound, resonant, and complex continuum states could be directly revealed from the eigenvalues of the Schrödinger equation in the complex momentum plane. The calculations of shape resonances in electron scattering with Na+ in Debye plasmas (one channel), and in the charge transfer process H?(1s2)+Li(1s22s) (12Σ+) H(1s)+Li?(1s22s2) (22Σ+) (coupled channels) are given as illustrative examples. It is shown that calculated results from CDM agree very well with those extracted from the eigenphase sum of scattering theories. The effectiveness of CDM is also demonstrated by comparing its results with those obtained by the complex rotation scaling and exterior complex scaling methods. The convergence of CDM results can be obtained by increasing the momentum integration region and the number of integration points. The studied examples demonstrate that CDM could be a powerful tool for studies of resonances in complex atomic and molecular systems.  相似文献   

3.
Singly-excited states of the two-electron atom cease being bound when Z1 (from above), the outer orbital becoming infinitely diffuse. The asymptotic relationslimZ1?(Z?1)k(1sns)1,3S|r12k|(1sns)1,3S=(n?1)s(0)|rk|(n?1)s(0), where k=?1,1,2,3,?, are demonstrated to hold. Here, (n?1)s(0) is a hydrogenic s orbital with principal quantum number (n?1). New, more nuanced light is shed on the already challenged dogma that the Pauli principle keeps the electrons further apart in the triplet than in the corresponding singlet.  相似文献   

4.
《Physics letters. A》2020,384(36):126930
We consider quantum bosons with contact interactions at the Lowest Landau Level (LLL) of a two-dimensional isotropic harmonic trap. At linear order in the coupling parameter g, we construct a large, explicit family of quantum states with energies of the form E0+gE1/4+O(g2), where E0 and E1 are integers. Any superposition of these states evolves periodically with a period of 8π/g until, at much longer time scales of order 1/g2, corrections to the energies of order g2 may become relevant. These quantum states provide a counterpart to the known time-periodic behaviors of the corresponding classical (mean field) theory.  相似文献   

5.
B. Shayak 《Physics letters. A》2019,383(13):1381-1384
We show that such a magnetic dipole suspended at a height h above a conducting sheet experiences a lift force proportional to 1/h2. This represents an order of magnitude improvement over the 1/h4 lift obtained in the quasistatic limit.  相似文献   

6.
Critical phenomena theory centers on the scaled thermodynamic potential per spin ?(β,h)=|t|pY(h|t|?q), with inverse temperature β=1/T, h=?βH, ordering field H, reduced temperature t=t(β), critical exponents p and q, and function Y(z) of z=h|t|?q. I discuss calculating Y(z) with the information geometry of thermodynamics. Scaled solutions are found to obtain with three admissible functions t(β): 1) t=e?Jβ, 2) t=β?1, and 3) t=βC?β, where J and βC are constants. For p=q, information geometry yields Y(z)=1+z2, consistent with the one-dimensional (1D) ferromagnetic Ising model.  相似文献   

7.
8.
9.
10.
11.
《Physics letters. A》2020,384(13):126265
The exact solvability and impressive pedagogical implementation of the harmonic oscillator's creation and annihilation operators make it a problem of great physical relevance and the most fundamental one in quantum mechanics. So would be the position-dependent mass (PDM) oscillator for the PDM quantum mechanics. We, hereby, construct the PDM creation and annihilation operators for the PDM oscillator via two different approaches. First, via von Roos PDM Hamiltonian and show that the commutation relation between the PDM creation Aˆ+ and annihilation Aˆ operators, [Aˆ,Aˆ+]=1AˆAˆ+1/2=Aˆ+Aˆ+1/2, not only offers a unique PDM-Hamiltonian Hˆ1 but also suggests a PDM-deformation in the coordinate system. Next, we use a PDM point canonical transformation of the textbook constant mass harmonic oscillator analog and obtain yet another set of PDM creation Bˆ+ and annihilation Bˆ operators, hence an “apparently new” PDM-Hamiltonian Hˆ2 is obtained. The “new” PDM-Hamiltonian Hˆ2 turned out to be not only correlated with Hˆ1 but also represents an alternative and most simplistic user-friendly PDM-Hamiltonian, Hˆ=(pˆ/2m(x))2+V(x); pˆ=iħx, that has never been reported before.  相似文献   

12.
《Physics letters. A》2020,384(28):126752
A second order non-perturbative trapping scenario is employed to show the existence of a new Gaussian type of solitary electron holes. Use is thereby made of Schamel's pseudo-potential method, the only method that can guarantee the completeness of an equilibrium solution of the Vlasov-Poisson system in addition to its existence. The new potential is of the form eX(x)2 where X(x)=sinh(x) and is hence reminiscent of the Gaussian potential appearing in its “second generation”. The simultaneous presence of both trapping generations hence establishes a one-parametric continuum spectrum of solitary electron holes all of them being, through appropriate fitting, potential candidates for identifying structures in experimental observations and numerical simulations. Taking into account the possibility of many more trapping scenarios moreover, a unique identification of structures, the desired goal expressed in the current literature when interpreting structure formation, is therefore not achievable. Origin of this intrinsic ambiguity is the loss of mathematical stringency in the kinetic regime through chaos triggered by the ergodic particle trajectories in the resonant region of phase space in the single particle – coherent wave interaction process.  相似文献   

13.
《Physics letters. A》2019,383(22):2652-2657
The equilibrated grain boundary groove shape of solid Al in equilibrium with Al-Sn-Mg eutectic liquid was observed by using a Bridgman type directional solidification apparatus. The ratio of the thermal conductivity of the equilibrated liquid to the thermal conductivity of solid Al has been obtained as 0.91. In addition, the average Gibbs-Thomson coefficient, Γ=(4.20±0.35)×108Km, the solid-liquid interfacial energy, σSL=180.68±23.48mJ/m2 and the grain boundary energy, σGB=309.30±29.47mJ/m2, in the Al/Al-Sn-Mg system have been calculated from the measured grain boundary shapes.  相似文献   

14.
15.
Nanoparticles of CdxMg0.12?xZn0.88O (0x0.02) were synthesized by a simple sol gel route with the combination of chelating agents. Effect of cadmium on the phase, structural, morphological and optical properties of the synthesized nanoparticles has been studied and reported by using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared spectroscopy (FTIR) and UV–Vis diffuse reflectance spectroscopy (UV–vis DRS). The crystal size, lattice parameters, unit cell volume, X-ray density, inter-planar distances and bond length were obtained and analyzed from the XRD data. The X-ray analysis reveals the formation of a single phase with a hexagonal wurtzite structure, where an increase of the cell volume was achieved as the Cd content was increased as well. Synthesized nanoparticle were nearly spherical at nano-size regime and are loosely agglomerated as observed from the SEM analysis. EDX spectra of the composition confirmed the appropriate stoichiometric ratio. A fundamental absorption peak centered at 375 nm was observed from the UV–visible absorption spectra which shifted towards a higher wavelength correlating the narrowing of the energy band gap due to increase in Cd content. The structural adjustment from the IR spectra confirmed the stretching vibration of Zn–O in the CdxMg0.12?xZn0.88O lattice with Cd content.  相似文献   

16.
We find that the bulk moment of inertia per unit volume of a metal becoming superconducting increases by the amount me/(πrc), with me the bare electron mass and rc=e2/mec2 the classical electron radius. This is because superfluid electrons acquire an intrinsic moment of inertia me(2λL)2, with λL the London penetration depth. As a consequence, we predict that when a rotating long cylinder becomes superconducting its angular velocity does not change, contrary to the prediction of conventional BCS-London theory that it will rotate faster. We explain the dynamics of magnetic field generation when a rotating normal metal becomes superconducting.  相似文献   

17.
18.
We present a new procedure to investigate the I–V characteristics and the conductance for strained SWCNTs. These electronic transport properties have been studied theoretically at zero temperature for zig-zag, armchair and chiral SWCNTs under the effect of the uniaxial tension and torsional strain. The analytical expression of the energy spectrum in the tight binding approximation has been used to calculate the induced current and the conductance through Landauer–Büttiker formalism. It is shown that the conductance for unstrained CNTs at initial values of the voltage can take discrete values which are equal to zero and 4 (e2/h) for semiconducting and conducting SWCNTs respectively. The emergence of the kinks in the I–V characteristics is due to the discrete electronic spectrum in the SWCNTs. The location and number of kinks are changeable under the effect of strain process. The conductance in a strained armchair (5,5) CNT decreases to zero under torsional strain, consequently, it will transform the conducting SWCNTs at a threshold value of strain to a semiconducting SWCNT. In contrast, by applying the uniaxial tension on the armchair (5,5) CNT, the conductance does not change absolutely. There is a different behavior can be observed by applying the strain on zig-zag (10,0) CNT, where the conductance decreases rapidly and slightly under the influence of uniaxial tension and torsional strain, respectively. We found that the conductance of chiral (10,9) CNT is not significantly affected by applying the strain under consideration. More interestingly, the band structure of chiral (10,9) CNT under uniaxial tension and torsional strain have been investigated within the tight binding approximation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号