首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The structures and elasticities of phase B silicates with different water and iron(Fe) content are obtained by firstprinciples simulation to understand the effects of water and Fe on their properties under high pressure.The lattice constants a and b decrease with increasing water content.On the contrary,c increases with increasing water content.On the other hand,the b and c decrease with increasing Fe content while a increases with increasing Fe content.The decrease of M(metal)–O octahedral volume is greater than the decrease of SiO polyhedral volume over the same pressure range.The density,bulk modulus and shear modulus of phase B increase with increasing Fe content and decrease with increasing water content.The compressional wave velocity(V_p) and shear wave velocity(V_s) of phase B decrease with increasing water and Fe content.The comparisons of density and wave velocity between phase B silicate and the Earth typical structure provide the evidence for understanding the formation of the X-discontinuity zone of the mantle.  相似文献   

2.
The lattice,the band gap and the optical properties of n-type ZnO under uniaxial stress are investigated by firstprinciples calculations.The results show that the lattice constants change linearly with stress.Band gaps are broadened linearly as the uniaxial compressive stress increases.The change of band gap for n-type ZnO comes mainly from the contribution of stress in the c-axis direction,and the reason for band gap of n-type ZnO changing with stress is also explained.The calculated results of optical properties reveal that the imaginary part of the dielectric function decreases with the increase of uniaxial compressive stress at low energy.However,when the energy is higher than 4.0 eV,the imaginary part of the dielectric function increases with the increase of stress and a blueshift appears.There are two peaks in the absorption spectrum in an energy range of 4.0-13.0 eV.The stress coefficient of the band gap of n-type ZnO is larger than that of pure ZnO,which supplies the theoretical reference value for the modulation of the band gap of doped ZnO.  相似文献   

3.
The electronic structure and optical properties of Al and Mg co-doped GaN are calculated from first principles using density function theory with the plane-wave ultrasoft pseudopotential method.The results show that the optimal form of p-type GaN is obtained with an appropriate Al:Mg co-doping ratio rather than with only Mg doping.Al doping weakens the interaction between Ga and N,resulting in the Ga 4s states moving to a high energy region and the system band gap widening.The optical properties of the co-doped system are calculated and compared with those of undoped GaN.The dielectric function of the co-doped system is anisotropic in the low energy region.The static refractive index and reflectivity increase,and absorption coefficient decreases.This provides the theoretical foundation for the design and application of Al–Mg co-doped GaN photoelectric materials.  相似文献   

4.
We studied the energetic behaviors of interstitial and substitution carbon(C)/nitrogen(N) impurities as well as their interactions with the vacancy in vanadium by first-principles simulations. Both C and N impurities prefer the octahedral site(O-site). N exhibits a lower formation energy than C. Due to the hybridization between vanadium-d and N/C-p, the N-p states are located at the energy from-6.00 e V to-5.00 e V, which is much deeper than that from-5.00 e V to-3.00 e V for the C-p states. Two impurities in bulk vanadium, C–C, C–N, and N–N can be paired up at the two neighboring Osites along the 111 direction and the binding energies of the pairs are 0.227 e V, 0.162 e V, and 0.201 e V, respectively.Further, we find that both C and N do not prefer to stay at the vacancy center and its vicinity, but occupy the O-site off the vacancy in the interstitial lattice in vanadium. The possible physical mechanism is that C/N in the O-site tends to form a carbide/nitride-like structure with its neighboring vanadium atoms, leading to the formation of the strong C/N–vanadium bonding containing a covalent component.  相似文献   

5.
A.John Peter  Chang Woo Lee 《中国物理 B》2012,21(8):87302-087302
Cd1-x ZnxS nanocrystals are prepared by a co-precipitation method with different atomic fractions of Zn.The texture,structural transformation and optical properties with increasing x value in Cd1-x ZnxS are studied with scanning electron microscopy,electron diffraction patterning,and absorption spectra respectively.Quantum confinement in a strained CdS/Cd1-xZnxS related nanodot with various Zn content values is investigated theoretically.Binding energies on exciton bound CdS/CdxZn1-xS quantum dot are computed,with consideration of the internal electric field induced by the spontaneous and piezoelectric polarizations,and thereby the interband emission energy is calculated as a function of the dot radius.The optical band gap from the UV absorption spectrum is compared with the interband emission energy computed theoretically.Our results show that the average diameter of composite nanoparticles ranges from 3 nm to 6 nm.The X-ray diffraction pattern shows that all the peaks shift towards the higher diffracting angles with an increase in Zn content.The lattice constant gradually decreases as the Zn content increases.The strong absorption edge shifts towards the lower wavelength region and hence the band gap of the films increases as the Zn content increases.The values of the absorption edge are found to shift towards the shorter wave length region and hence the direct band gap energy varies from 2.5 eV for the CdS film and 3.5 eV for the ZnS film.Our numerical results are in good agreement with the experimental results.  相似文献   

6.
The energy band structures, density of states, and optical properties of IIIA-doped wurtzite Mg0.25Zn0.75O(IIIA= Al,Ga, In) are investigated by a first-principles method based on the density functional theory. The calculated results show that the optical bandgaps of Mg0.25Zn0.75O:IIIAare larger than those of Mg0.25Zn0.75 O because of the Burstein–Moss effect and the bandgap renormalization effect. The electron effective mass values of Mg0.25Zn0.75O:IIIAare heavier than those of Mg0.25Zn0.75 O, which is in agreement with the previous experimental result. The formation energies of MgZnO:Al and MgZnO:Ga are smaller than that of MgZnO:In, while their optical bandgaps are larger, so MgZnO:Al and MgZnO:Ga are suitable to be fabricated and used as transparent conductive oxide films in the ultra-violet(UV) and deep UV optoelectronic devices.  相似文献   

7.
The structural properties,the enthalpies of formation,and the mechanical properties of some Ni-Al intermetallic compounds(NiAl,Ni3Al,NiAl3,Ni5Al3,Ni3Al4) are studied by using Chen’s lattice inversion embedded-atom method(CLI-EAM).Our calculated lattice parameters and cohesive energies of Ni-Al compounds are consistent with the experimental and the other EAM results.The results of enthalpy of formation indicate a strong chemical interaction between Ni and Al in the intermetallic compounds.Through analyzing the alloy elastic constants,we find that all the Ni-Al intermetallic compounds discussed are mechanically stable.The bulk moduli of the compounds increase with the increasing Ni concentration.Our results also suggest that NiAl,Ni3Al,NiAl3,and Ni5Al3 are ductile materials with lower ratios of shear modulus to bulk modulus;while Ni3Al4 is brittle with a higher ratio.  相似文献   

8.
周子聪  林方庭  陈柏翰 《中国物理 B》2015,24(2):28701-028701
We apply a Monte Carlo simulation method to lattice systems to study the effect of an intrinsic curvature on the mechanical property of a semiflexible biopolymer.We find that when the intrinsic curvature is sufficiently large,the extension of a semiflexible biopolymer can undergo a first-order transition at finite temperature.The critical force increases with increasing intrinsic curvature.However,the relationship between the critical force and the bending rigidity is structuredependent.In a triangle lattice system,when the intrinsic curvature is smaller than a critical value,the critical force increases with the increasing bending rigidity first,and then decreases with the increasing bending rigidity.In a square lattice system,however,the critical force always decreases with the increasing bending rigidity.In contrast,when the intrinsic curvature is greater than the critical value,the larger bending rigidity always results in a larger critical force in both lattice systems.  相似文献   

9.
We investigated the properties of polarons in a wurtzite ZnO/MgxZn1-xO quantum well by adopting a modified Lee–Low–Pines variational method, giving the ground state energy, transition energy, and phonon contributions from various optical-phonon modes to the ground state energy as functions of the well width and Mg composition. In our calculations, we considered the effects of confined optical phonon modes, interface-optical phonon modes, and half-space phonon modes, as well as the anisotropy of the electron effective band mass, phonon frequency, and dielectric constant. Our numerical results indicate that the electron–optical phonon interactions importantly affect the polaronic energies in the ZnO/MgxZn1-xO quantum well. The electron–optical phonon interactions decrease the polaron energies. For quantum wells with narrower wells, the interface optical phonon and half-space phonon modes contribute more to the polaronic energies than the confined phonon modes. However, for wider quantum wells, the total contribution to the polaronic energy mainly comes from the confined modes. The contributions of the various phonon modes to the transition energy change differently with increasing well width. The contribution of the half-space phonons decreases slowly as the QW width increases, whereas the contributions of the confined and interface phonons reach a maximum at d ≈ 5.0 nm and then decrease slowly. However,the total contribution of phonon modes to the transition energy is negative and increases gradually with the QW width of d.As the composition x increases, the total contribution of phonons to the ground state energies increases slowly, but the total contributions of phonons to the transition energies decrease gradually. We analyze the physical reasons for these behaviors in detail.  相似文献   

10.
张敏  班士良 《中国物理 B》2009,18(12):5437-5442
The screening effect of the random-phase-approximation on the states of shallow donor impurities in free strained wurtzite GaN/Al x Ga 1 x N heterojunctions under hydrostatic pressure and an external electric field is investigated by using a variational method and a simplified coherent potential approximation.The variations of Stark energy shift with electric field,impurity position,Al component and areal electron density are discussed.Our results show that the screening dramatically reduces both the blue and red shifts as well as the binding energies of impurity states.For a given impurity position,the change in binding energy is more sensitive to the increase in hydrostatic pressure in the presence of the screening effect than that in the absence of the screening effect.The weakening of the blue and red shifts,induced by the screening effect,strengthens gradually with the increase of electric field.Furthermore,the screening effect weakens the mixture crystal effect,thereby influencing the Stark effect.The screening effect strengthens the influence of energy band bending on binding energy due to the areal electron density.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号