首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Coaxial laser cladding on an inclined substrate   总被引:7,自引:0,他引:7  
This paper describes an experimental and theoretical study of the cladding mode of coaxial laser cladding on an inclined substrate. Based on the image analysis of the powder stream and clad profile measurements in coaxial laser cladding, it was found that irregular clad profiles always formed on an inclined surface and the location of the peak profile shifted away from the clad center. This phenomenon is caused by uneven distributions of powder concentration and laser beam intensity. A modified Gaussian mode for powder stream and laser beam was proposed to estimate the clad profiles on an inclined plane under laser beam irradiation. The effects of the inclined steel substrate on the CO2 laser beam absorption and stainless-steel powder catchment were examined experimentally. The results show that both the laser absorption and the powder catchment on the mild steel decrease with increasing the cladding angle. From the analysis of laser beam mode, the clad width is equivalent to the beam spot size on the inclined substrate. However, the clad height correlates well with the distribution of the powder concentration. The results show that the Gaussian cladding mode could be adopted in various laser cladding applications such as rapid prototyping and butt welding to predict the clad profiles precisely.  相似文献   

2.
Temperature analysis of the powder streams in coaxial laser cladding   总被引:8,自引:0,他引:8  
The powder stream temperature of a newly developed coaxial laser cladding technique have been calculated and measured in this study. A simplified one-dimensional model of the particle heating problem under laser irradiation was solved with various conditions of laser intensity, particle size and flow velocity. The experimental results have been successfully detected by a pin-hole infrared sensor with the temperature calibration for hot particles. The thermal profiles of the coaxial nozzle give an optimum operation range of the stand-off distance for coaxial laser cladding.  相似文献   

3.
The structure below the coaxial nozzle is critical since the spatial distribution of metal powder particles determines the laser attenuation as well as catchment efficiency. It is difficult to simulate the powder concentration distribution, because the complex phenomena involved in the two-phase turbulence flow. In this paper, the air-powder flow is studied along with powder properties, nozzle geometries and shielding gas setting. A Gaussian model is established to quantitatively predict the powder stream concentration in order to facilitate coaxial nozzle design optimizations. An experimental setup is design to measure the powder concentration for this process. The simulated results are compared with the experimental results. This study shows that the powder concentration mode is influenced significantly by powder properties, nozzle geometries and shielding gas setting.  相似文献   

4.
Concentration mode of the powder stream in coaxial laser cladding   总被引:1,自引:0,他引:1  
The blown powder laser cladding process has recently been greatly enhanced by the development of a coaxial powder feed system. It provides a new route to generate the metal parts directly from CAD drawings. The performance of the coaxial powder feeder depends on various gas flow streams which significantly affect the distribution mode of the powder stream and the deposition rate in cladding.Two types of optical techniques have been adopted in this study to investigate the powder concentration mode of the coaxial jet streams. The mode of the powder stream is also mathematically modelled and compared to the experimental results of stainless steel powder. The Gaussian distribution mode in the transverse direction of the powder stream was identified by theory and experiment at cold stream conditions.  相似文献   

5.
激光熔覆中金属粉末粒子与激光相互作用模型   总被引:4,自引:1,他引:3  
杨楠  杨洗陈 《光学学报》2008,29(9):1745-1750
为了对同轴激光熔覆过程中运动的金属粉末粒子的速度和温度进行理论分析,并研究各工艺参量的影响,建立了运动中金属粉末粒子的运动模型和热模型.模拟结果表明,粉嘴几何尺寸、粒子直径以及气/粉两相流初始速度是影响粒子运动行为的重要因素;粉嘴几何尺寸、激光焦点位置、激光发散角、激光功率、粒子直径以及气/粉两相流初始速度是影响粒子热行为的重要因素.在相同的工艺参量下(粉嘴出口内径r=2 mm,粉嘴倾角α=60°,初始气流速度v0=0.8 m/s),基于数字粒子图像测速(DPIV)技术,对316L不锈钢粉末粒子运动模型进行了实验验证.结果表明,运动理论模型是可靠的.该模型是掌握同轴激光熔覆过程中金属粉末粒子运动行为的有效工具;同时,热模型也是分析粉末粒子温度随不同参量变化的重要工具.  相似文献   

6.
This paper introduces a 3-D transient finite element model of laser cladding by powder injection to investigate the effects of laser pulse shaping on the process. The proposed model can predict the clad geometry as a function of time and process parameters including laser pulse shaping, travel velocity, laser pulse energy, powder jet geometry, and material properties. In the proposed strategy, the interaction between powder and melt pool is assumed to be decoupled and as a result, the melt pool boundary is first obtained in the absence of powder spray. Once the melt pool boundary is obtained, it is assumed that a layer of coating material is deposited on the intersection of the melt pool and powder stream in the absence of the laser beam in which its thickness is calculated based on the powder feedrate and elapsed time. The new melt pool boundary is then calculated by thermal analysis of the deposited powder layer, substrate and laser heat flux. The process is simulated for different laser pulse frequencies and energies. The results are presented and compared with experimental data. The quality of clad bead for different parameter sets is experimentally evaluated and shown as a function of effective powder deposition density and effective energy density. The comparisons show excellent agreement between the modeling and experimental results for cases in which a high quality clad bead is expected.  相似文献   

7.
In this paper, model of effects of powder concentration distribution on fabrication of thin-wall parts in coaxial laser cladding was developed. There exists relationship between powder concentration distribution and power density distribution, which affects fabrication of thin-wall parts in coaxial laser cladding. Changes in powder concentration distribution lead to changes in wall thickness and wall growing rate. Fluctuation of powder feed rate deteriorates the growing wall in laser cladding. Deviation of the powder flow stream makes the powder concentration distribution, the thermal flux density and consequently the molten pool not symmetrical against the x-axis, resulting in irregular upper faces of the formed wall. This was verified by the results of experiment.  相似文献   

8.
Currently, laser cladding is an important process that allows the deposition of thick protective coatings on substrates. The article presents an experimental investigation of the influence of processing parameters on clad angle in laser cladding by powder (LCP). The clad angle is determined from the mathematical expression relating to the clad height and clad width. The cladding angle model was developed in terms of laser power, scanning speed, and powder mass flow rate by means of response surface methodology. A first-order equation covering a narrow range of the variables and a second-order equation covering a wide range of the variables are presented. An optimization technique, Scatter Search, is used to determine optimal processing parameters. The adequacy of the predictive model was tested by analysis of variance and found to be adequate.  相似文献   

9.
Effects of process variables on laser direct formation of thin wall   总被引:2,自引:0,他引:2  
In this paper, effects of process variables on wall thickness, powder primary efficiency and speed of forming a thin metallic wall in single-pass coaxial laser cladding are investigated, and some resolution models are established and testified experimentally. With some assumptions, each of wall thickness, powder primary efficiency and formation speed can be defined as a function of the process variables. Wall thickness is equal to width of the molten pool created in single-pass laser cladding and determined by laser absorptivity, laser power, initial temperature, scanning speed and thermo-physical properties of clad material. Powder primary efficiency and formation speed are both dependent on an exponential function involving the ratio of melt pool width, which is decided by the process variables, to powder flow diameter. In addition, formation speed is influenced by powder feed rate. In present experiment, a 500 W continual-wave (CW) CO2 laser is used to produce thin-wall samples by single-pass coaxial laser cladding. The experimental results agree well with the calculation values despite some errors.  相似文献   

10.
In this paper, a model of cross-section clad profile on the substrate in coaxial single-pass cladding with a low-power laser was studied. The static model of powder mass concentration distribution at cold-stream conditions was defined as a Gaussian function. In coaxial single-pass cladding with a low-power laser, since the influence of surface tension, gravity and gas flow on the clad bead could be neglected, the cross-section profile of the clad bead deposited by a low-power laser on the substrate was dominated by the powder concentration at each point on the pool and the time when the material was liquid at this point. The height of each point on the cross-section clad profile was defined as a definite integration of a Gaussian function from the moment at which the melt pool was just arriving at the point to the moment at which the point left the melt pool. In the presented experiment, powder of Steel 63 (at 0.63 wt% C) was deposited on a substrate of Steel 20 (at 0.20 wt% C) at the laser power of 135 W. The experimental results testified the model.  相似文献   

11.
The powder catchment and clad profile of the edge welding were investigated by experimental and numerical approaches in this study. The clad profile on the edges joined by a coaxial powder filler nozzle with a CO2 laser was measured and compared with the powder concentration mode, which was confirmed by powder flow visualization and numerical computations.In the numerical simulation of an impinging jet of gas-powder flow on an edge joint, the powder concentration distributed on a V groove joined by two plates was solved by FLUENT software. Based on the Gaussian mode of the powder distribution in the jet flow, a simplified mode function was proposed to estimate the clad profiles in the edge joint.Cladding experiments were performed for mild steel substrates with thicknesses of 2 and 6 mm under 1 kWCO2 laser irradiation for 304L stainless steel powder. The results show that the concave clad profiles were generated at large incline angles and the powder catchment efficiency might increase with the joint angle and substrate thickness.Based on the analytical results of the cold powder streams impinging on the edge joint, the similarity between the clad profile and the powder concentration in the edge joint is retained only at small incline angles for thin substrates. Due to the heating effects of laser beam spot and the powder re-distribution inside the edge joint, the deviation of the clad profile between the computation and experiment is increased with the incline angle and substrate thickness.  相似文献   

12.
Direct Laser Fabrication is a promising new manufacturing technology coming from laser cladding process. From a coaxial nozzle, powder is fed through a laser beam on a substrate. The powder melting and solidification processes lead to the fabrication of a part layer by layer. In this work 316L stainless steel powder is used to form laser tracks on a low carbon steel substrate. The layer geometry is an important process characteristic to control the final part of fabrication. This paper presents analytical relationships between the laser tracks geometrical characteristics (width, height, area, penetration depth) and the processing parameters (laser power P, scanning speed V and powder mass flow Qm). Three values of each processing parameters are fixed and so 27 different experiments have been made and analyzed. The validity of these results is discussed studying the correlation coefficient R, the graphical analysis of the residuals and the uncertainty evaluations. Two kinds of models are studied to predict the form and the geometrical characteristics of the single laser tracks cross sections. The first one is an analytical model in which the distribution of the powder in the feed jet is supposed to govern the laser clad geometry. Three distributions are proposed: Gaussian, uniform and polynomial. In the second model the general form of the clad cross section is supposed to be a disk due to the surface tension forces. Analytical relationships are established between the radius and the center of the disk in one hand and the process parameters in the other hand. This way we show that we can reproduce the laser track geometry in all the area experimentally explored.  相似文献   

13.
To investigate the influencing rule of deposited layer’s shape on coaxial powder feeding flow field in the metal forming process, gas–solid two-phase flow theory is used to analyze effect of deposited layers on powder concentration distribution and variation of focus distance from nozzle outlet to convergence point (the center of the convergent zone). Different height and width parameters of deposited layers were chosen to calculate the powder concentration distribution, consequently, and also their effect on additive height of single-trace cladding layer was studied by experimental investigations. The numerical results are in good agreement with experimental observations. The results indicated that additive height of cladding layer was non-uniform under uneven wall thickness of parts fabrication condition. Consequently, the surface of deposited layers with uneven thickness is not smooth, and hence affects surface forming quality.  相似文献   

14.
In order to determine a cross-sectional profile of a clad bead in coaxial laser cladding, its formation mechanism is investigated theoretically and experimentally. In laser cladding, every point at the back edge of a melt pool is contributed to a cross-sectional profile of the clad bead to be formed, and points at the same pool edge but on different cross sections are located at different cross-sectional profiles of the clad bead. A cross-sectional profile of a clad bead is composed of points of intersection between the cross section and a series of pool edges. Model of the cross-sectional clad profile in single-pass coaxial laser cladding is developed. A 500 W CO2 laser is used in the experiment. The experimental result agrees well with the calculated cross-sectional clad profile.  相似文献   

15.
The microstructure of a clad layer produced via selective laser cladding with coaxial metal powder injection is studied numerically. The Johnson–Mehl–Avrami–Kolmogorov equation for condensed systems with inhomogeneous rates of nucleation is used to model the phase change kinetics. The impact of the substrate boundary along with interconnected heat transfer and phase change processes on the final microstructure of a built-up layer is demonstrated. The qualitative difference between the behavior of the temperature on the built-up layer’s surface and at the depth of the substrate is established, revealing the inhomogeneous microstructure of the final layer.  相似文献   

16.
Thermal processes of a powder particle in coaxial laser cladding   总被引:1,自引:0,他引:1  
This paper presents a numerical analysis of the heating, melting and evaporation processes of a single spherical powder particle when irradiated by a CO2 laser beam in coaxial laser cladding. The power particle has a size ranging from 20 to 200 μm and the intensity of the laser has been varied from 500 to 3000 W. The laser energy, initial powder velocity and size have been shown to have important effects on the temperature profile of the powder stream. It has also been shown that high powder evaporation due to high power laser radiation may induce significant loss in the powder particle mass, to as much as 25% of the initial size at certain conditions in the simulation.  相似文献   

17.
An estimation of the heat loss by conduction can be obtained from measurements of the surface temperature and an overall heat balance at the clad laser interaction zone. Through an inverse calculation of the boundary temperature from observed surface temperatures the powder catchment efficiency can be estimated along with the variation in the clad height expected during laser cladding. This method shows a possible way to monitor and control the clad height and profile as required by near net shape manufacturing methods based on laser cladding.  相似文献   

18.
Laser cladding has been successfully introduced into industry for the use in wear and corrosion applications and in the repair work such as turbine components, moulds and dies. Through monitoring and furthermore controling the cladding process, the quality and reproducibility in the production can be ensured. Thus the economic efficiency can increase through the reduced scrap rate. The aim of this work is to identify and analyse the infrared temperature signal emitted from the melt pool, which could be used for quality control and for closed loop control. Different measure systems including a photodiode, pyrometer and CCD camera with different functional wavelengths were used to detect the temperature radiation. The detected signals show dependence on the main process parameters including laser power, powder feeding rate and scanning speed. The results of the clad such as dilution and dimension have very good correlation with the measured temperature signal. A process monitoring and control system based on the infrared temperature signal with coaxial alignment of the ancillary lenses was established and tested successfully.  相似文献   

19.
送粉角度对激光熔覆铁基复合涂层形状特征的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
通过分析激光熔覆过程中光束、粉末和熔池间的作用机理,建立了送粉式激光熔覆材料有效利用率的数学模型,在此基础上推导了送粉角度与工艺参数之间的定量关系式,并计算了不同送粉角度下的熔覆材料有效利用率、熔高和横截面积。结果表明,在熔覆工艺参数不变的条件下,理论计算的熔覆材料有效利用率、熔覆层高度和横截面积均随送粉角度的增加而增大,且均高于实验检测值。激光熔覆过程中,由于粉末烧损和机械损失,使熔覆材料有效利用率、熔高和横截面积随送粉角度变化出现最大值,理想送粉角度为60。  相似文献   

20.
Powder and wire deposition have been used separately in many laser-cladding, rapid prototyping and other additive manufacturing applications. In this paper, a new approach is investigated by simultaneously feeding powder from a coaxial nozzle and wire from an off-axis nozzle into the deposition melt pool. Multilayer parts are built from 316L steel using a 1.5 kW diode laser and different configurations of the powder and wire nozzles are compared in terms of surface roughness, deposition rate, porosity and microstructure. The parts are analysed using scanning electron microscopy (SEM), X-ray diffraction (XRD) and optical microscopy techniques. Results show that deposition efficiency increased and surface roughness decreased with the combined process; some porosity was present in samples produced by this method, but it was 20-30% less than in samples produced by powder alone. Wire injection angles into the melt pool in both horizontal and vertical planes were found to be significant for attaining high deposition efficiency and good surface quality. Reasons for the final sample characteristics and differences between the combined process and the separate powder and wire feeding techniques are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号