首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 591 毫秒
1.
The third harmonic generation (THG), linear and nonlinear optical absorption coefficients (OACs), and refractive index changes (RICs) are investigated in a Woods–Saxon quantum well (QW) modulated by the hydrostatic pressure and applied electric field. The effect of non-uniform aluminum doping (position-dependent effective mass (PDEM)) on the mass of the system is discussed, and further to explore the influence of PDEM on the nonlinear THG, OACs, and RICs of the Woods–Saxon QW. These nonlinear optical properties above are obtained using the compact-density matrix formalism. The electron states in a Woods–Saxon QW under the constant effective mass (CEM) and PDEM are calculated by solving the Schrödinger equation via the finite difference technique. The contributions from competing effects of the hydrostatic pressure and applied electric field to the nonlinear optical properties with CEM and PDEM are reported, as well as the comparison with each other. The observations reveal that the regulation of external fields and the influence of PDEM play an important role in the photoelectric properties of QW.  相似文献   

2.
In this study, simultaneous effects of hydrostatic pressure, temperature and magnetic field on the linear and nonlinear intersubband optical absorption coefficients (OACs) and refractive index changes (RICs) in asymmetrical Gaussian potential quantum wells (QWs) are theoretically investigated within the framework of the compact-density-matrix approach and iterative method. The energy eigenvalues and their corresponding eigenfunctions of the system are calculated with the differential method. Our results show that the position and the magnitude of the resonant peaks of the nonlinear OACs and RICs depend strongly on the hydrostatic pressure, temperature and external magnetic field. This gives a new degree of freedom in various device applications based on the intersubband transitions of electrons.  相似文献   

3.
For square-step quantum wells(SSQWs) and graded-step quantum wells(GSQWs), the nonlinear optical rectification(NOR), second harmonic generation(SHG) and third harmonic generation(THG) coefficients under an intense laser field(ILF) are analyzed. The found results indicate that ILF can ensure a vital influence on the shape and height of the confined potential profile of both SSQWs and GSQWs, and alterations of the dipole moment matrix elements and the energy levels are adhered on the profile of the confined potential. According to the results, the potential profile and height of the GSQWs are affected more significantly by ILF intensity compared to SSQWs. These results indicate that NOR, SHG and THG coefficients of SSQWs and GSQWs may be calibrated in a preferred energy range and the magnitude of the resonance peak(RP) by tuning the ILF parameter. It is feasible to classify blue or red shifts in RP locations of NOR, SHG and THG coefficients by varying the ILF parameter. Our results can be useful in investigating new ways of manipulating the opto-electronic properties of semiconductor QW devices.  相似文献   

4.
Electric field effect on the second-order nonlinear optical properties in semiparabolic quantum wells are studied theoretically. Both the second-harmonic generation susceptibility and nonlinear optical rectification depend dramatically on the direction and the strength of the electric field. Numerical results show that both the second-harmonic generation susceptibility and nonlinear optical rectification are always weakened as the electric field increases where the direction of the electric field is along the growth direction of the quantum wells, which is in contrast to the conventional case. However, the second-harmonic generation susceptibility is weakened, but the nonlinear optical rectification is strengthened as the electric field increases where the direction of the electric field is against the growth direction of the quantum wells. Also it is the blue (or red) shift of the resonance that is induced by increasing of the electric field when the direction of the electric field is along (or against) the growth direction of the quantum wells. Finally, the resonant peak and its corresponding to the resonant energy are also taken into account.  相似文献   

5.
We derive expressions for the effective nonlinear susceptibility tensors for both the second harmonic generation (SHG) and induced third harmonic generation (THG) of nonlinear composite materials, in which nondilute coated particles with radial dielectric anisotropy are randomly embedded in the linear host. Two types of coated particles are considered. The first is that the core possesses a second order nonlinear susceptibility and the shell is linear and radially anisotropic, while the second is that the core is linear with radial anisotropy and the shell has a second order nonlinear susceptibility. We observe greatly enhanced SHG and THG susceptibilities at several surface plasmon resonant frequencies. For the second model, due to the coating material being metallic, there exists two fundamental resonant frequencies ωc1 and ωc2, whose difference ωc2c1 is strongly dependent on the interfacial parameter and the radial dielectric anisotropy. Furthermore, in both systems, the adjustment of the dielectric anisotropy results in larger enhancement of both SHG and induced THG susceptibilities at surface plasmon resonant frequencies than the corresponding isotropic systems. Therefore, both the core-shell structure and the dielectric anisotropy play important roles in determining the nonlinear enhancement and the surface resonant frequencies.  相似文献   

6.
By using the displacement harmonic variant method and the compact density matrix approach, the linear and nonlinear intersubband refractive index changes (RICs) in a semiparabolic quantum well (QW) with applied electric field have been investigated in detail. The simple analytical formulae for the linear and nonlinear RICs in the system were also deduced. The symmetrical parabolic QWs with applied electric fields were taken into account for comparison. Numerical calculations on typical GaAs QWs were performed. The dependence of the linear and nonlinear RICs on the incident optical intensity, the frequencies of the confined potential of the QWs and the strength of the applied electric field were discussed. Results reveal that the RICs in the semiparabolic quantum well system sensitively depend on these factors. The calculation also shows that the semiparabolic QW is a more ideal nonlinear optical system relative to the symmetric parabolic QW systems.  相似文献   

7.
ItisreportedrecentlythatnonlinearopticalphenomenonofSHGandTHGhasbeenobservedinmanybiologicaltissues[16].SHGandTHGhavebeenusedtoperformthethree-dimensionalimaginginlivingtissuesandhaveattractedmuchattentionrecently.TherearemanyadvantagesofusingSHGandTHGtoperformthethree-dimensionalimaginginlivingtissues,suchasnoninvasiveandnophotobleaching,inadditiontotheimagingpropertiesofmulti-photonfluorescenceimaging[7—9].Firstly,unlikeinthesingle-andmulti-photonfluorescenceprocesses,onlyvirtualstat…  相似文献   

8.
In the present work, we have studied numerically the second harmonic generation (SHG) and third harmonic generation (THG) in a cone-like quantum dot. For this purpose, we firstly obtained the energy levels and wave functions of this system. Then, we have used an expression for the SHG and THG by a compact density matrix approach and an iterative procedure. The SHG and THG enhance and shift toward lower energy by increasing the height h and vertex angle α. According to the results it is found that the structural parameters have great influence on the THG in this system.  相似文献   

9.
In the present work, we have studied electronic and optical properties of a lens-shaped quantum dot under an external magnetic field. For this goal, we have calculated the energy levels and wave functions using the finite element method(FEM) for different values of magnetic field. We have also studied effect of magnetic field on second harmonic generation(SHG) and third-harmonic generation(THG) in the lens-shaped quantum dot. In this regard, we have obtained an analytic expression for the SHG and THG by a compact density matrix approach and an iterative procedure. According to the obtained results, it is found that the presence of the magnetic field affects the symmetry of the system. The SHG and THG are decreased with increasing the magnetic field. The magnetic field has a great influence on the energy levels, wave functions, the SHG and THG in a lens shaped quantum dot.  相似文献   

10.
理论研究了法拉第位形下强太赫兹激光场、磁场以及压强作用下半导体中浅杂质态非线性光学性质.利用含时非微扰理论——强太赫兹激光场效应被精确包含在激光缀饰库仑势中——和变分法计算出浅杂质态电子能级和波函数,然后基于紧致密度矩阵方法研究强外场和压强对浅杂质态1s→2pz跃迁的线性、三阶非线性及总的光学吸收系数和折射率变化的影响.研究发现压强和强外场通过激光缀饰库仑势可调控跃迁能和几何因子的增大或减小,所以饱和吸收不但依赖于入射光强和弛豫时间而且还依赖于强外场,在强激光场强度和回旋共振区域附近饱和吸收更容易实现.线性、三阶非线性及总的光学吸收系数和折射率变化的共振峰位置和振幅,在选取合适的外场参数下不但受到强外场的有效调控,而且还受到压强的强烈影响.研究结果为设计强外场调控的新型高效基于杂质电子器件提供了理论支持.  相似文献   

11.
In the present work, we have studied electronic and optical properties of a lens-shaped quantum dot under an external magnetic field. For this goal, we have calculated the energy levels and wave functions using the finite element method (FEM) for different values of magnetic field. We have also studied effect of magnetic field on second harmonic generation (SHG) and third-harmonic generation (THG) in the lens-shaped quantum dot. In this regard, we have obtained an analytic expression for the SHG and THG by a compact density matrix approach and an iterative procedure. According to the obtained results, it is found that the presence of the magnetic field affects the symmetry of the system. The SHG and THG are decreased with increasing the magnetic field. The magnetic field has a great influence on the energy levels, wave functions, the SHG and THG in a lens shaped quantum dot.  相似文献   

12.
We review the recent theoretical investigation on enhanced second-harmonic generation (SHG) in soft nonlinear optical materials based on ferrofluids, graded metallic films, and graded metal-dielectric films of anisotropic particles. The SHG of soft ferrofluid-based nonlinear optical materials possess magnetic-field controllabilities, i.e., magnetic-field-controllable anisotropy, red-shift and enhancement, which are caused to appear by the shift of a resonant plasmon frequency due to the formation of the chains of the coated nanoparticles. Both graded metallic films and graded metal-dielectric films of anisotropic particles can serve as a novel optical material for producing a broad structure in both the linear and SHG response and an enhancement in the SHG signal, due to the local field effects.   相似文献   

13.
Suvajit Pal  Manas Ghosh 《哲学杂志》2019,99(19):2457-2486
In this paper, we explore the linear, third-order nonlinear, and total optical absorption coefficient (OAC) and refractive index change coefficient (RICC) of a GaAs doped quantum dot/quantum ring (QD/QR) with parabolic-inverse squared potential in conjunction with modified Gaussian confinement and taking into account the presence of on-centre shallow donor and or acceptor impurity. Calculations are done via the compact density matrix formalism and the iterative method. The two-dimensional parabolic QD/QR is subjected to uniform magnetic field oriented perpendicularly to the plane of the structure. The energy levels and wave function are derived within the framework of effective-mass and parabolic band approximation. The results exhibit that the OACs and RICC are clearly affected by different parameters of the applied confinement, strength of magnetic field, and the presence of impurity. The variation of confinement potential, nature of impurity, dot radius, cyclotron frequency of the parabolic confinement potential, and geometric parameter of the on-centre repulsive potential lead to either a red-shift or a blue-shift of the resonant peaks of the OACs and of the maximum and minimum of the RICC together with significant variations of the magnitudes of these resonant structures.  相似文献   

14.
In the present paper, a theoretically study of the non-resonant laser field effect on the optical response, such as nonlinear optical rectification (NOR), second (SHG) and third harmonic generation (THG) coefficients in double finite oscillator potential (DFO) quantum wells is performed in the framework of the effective mass approximation. The obtained results reveal that, energy states and optical response is significantly affected by the non-resonant intense laser field (ILF) intensity and symmetry of the structure. Also it was found that the laser field is more effective on the optical response in the DFO potential when the asymmetric character of the confinement potential is strong. Thus, the NOR, SHG and THG coefficients with designated values can be obtained by using a properly adjusted ILF intensity and symmetry parameter of confinement potential.  相似文献   

15.
Dispersion relations of surface plasmon polaritons (SPPs) in sandwiched optical systems are studied. The system is actually a kind of SPP waveguides, with two kinds of single negative material (SNG) as core and cladding layers, respectively. Since both TM and TE polarized SPPs can be excited in the structure, the dispersion of SPPs becomes more abundant and leads to colorful nonlinear opticM properties. The authors demonstrate the effective phase-matched second and third-harmonic generation (SHG, THG) assisted by the coupled SPPs. A cascaded second-order nonlinear process can Mso be achieved in the structure when the thickness of the core layer is properly selected, leading to the simultaneous SHG and THG. Further investigations show that much easier phase-matching can be fulfilled in the SNG waveguide array. Our results would be of potential use for surface-enhanced frequency conversion device such as light emitters or lasers.  相似文献   

16.
By using the compact density matrix approach and iterative procedure, a detailed procedure for the calculation of the linear and nonlinear intersubband optical absorption coefficients is given in the electric-field-biased semi-parabolic quantum wells (QWs). The simple analytical formulas for the linear and nonlinear optical absorption coefficients in the systems are also deduced. Numerical result on typical GaAs materials shows that, the linear and nonlinear optical absorption coefficients sensitively depend on the applied electric field and the confined potential frequency of the semiparabolic QW systems as well as the incident optics beam intensity.  相似文献   

17.
In the present paper, we have studied the effects of temperature and pressure simultaneously on the third harmonic generation (THG) of a GaAs wedge-shaped quantum dot under the influence of spin–orbit interaction (SOI). For this purpose, we have used analytical expression for THG obtained by the compact-density matrix formalism. THG has been calculated for different temperatures and pressures under SOI. According to the obtained results, it is found that (i) THG shows a red shift of peak position in the presence of SOI. (ii) THG shifts toward higher energies with increasing temperature and considering the SOI. (iii) THG moves to lower energies with increasing pressure and considering the SOI.  相似文献   

18.
Second-harmonic generation (SHG) excited by a p-polarized terahertz wave interacting with AlGaAs/GaAs step quantum wells (STQW’s) is investigated on the basis of the microscopic nonlocal response theory. The numerical results show that there are two resonant peaks in the energy reflection spectrum of the SHG, whose position and amplitude are tunable via the structural parameters of the STQW’s and the incident optical intensity. It is clarified that the spatial nonlocality of the linear and second-order nonlinear optical responses can lead to a blueshift of the second-harmonic spectra, while the third-order nonlinearity can induce a spectral redshift. Furthermore, an optimal STQW is presented, for obtaining the largest SHG signal and observing the SH spectra by experiment.  相似文献   

19.
In the present work, we intend to study the pressure effect on optical properties of spherical quantum dots by using the modified Gaussian potential. In this regard, the linear, nonlinear and total intersubband absorption coefficients and refractive index changes are investigated for different hydrostatic pressures. According to the results obtained from the present work, it is deduced that: (i) the linear, nonlinear and total refractive index changes decrease and shift towards higher energies when the pressure increases and (ii) the linear, nonlinear and total absorption coefficients increase and shift towards higher energies by increasing the pressure.  相似文献   

20.
We present the first study of nonlinear optical third-harmonic generation (THG) in the strongly correlated charge-transfer insulator Sr(2)CuO(2)Cl(2). For fundamental excitation in the near infrared, the THG spectrum reveals a strongly resonant response for photon energies near 0.7 eV. Polarization analysis reveals this novel resonance to be only partially accounted for by three-photon excitation to the optical charge-transfer exciton, and indicates that an even-parity state at 2 eV, with a(1g) symmetry, participates in the third-harmonic susceptibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号