首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To the best of our knowledge, all nonlinearities in the known nonlinear integrable systems are either local or nonlocal. A natural problem is whether there exist some nonlinear integrable systems with both local and nonlocal nonlinearities, and how to solve this kinds of spectral nonlinear integrable systems with both local and nonlocal nonlinearities. Recently, some novel mixed local-nonlocal vector Schrödinger equations are presented, which are different from the single local and nonlocal coupled Schrödinger equation. We investigate the Darboux transformation of mixed local-nonlocal vector Schrödinger equations with a spectral problem. Starting from a special Lax pairs, the mixed localnonlocal vector Schrödinger equations are constructed. We obtain the one- and two- and N-soliton solution formulas of the mixed local-nonlocal vector Schrödinger equations with N-fold Darboux transformation. Based on the obtained solutions, the propagation and interaction structures of these multi-solitons are shown, the evolution structures of the one-solitons are exhibited, the overtaking elastic interactions among the two-breather solitons are considered. We find that unlike the local and nonlocal cases, the mixed local-nonlocal vector Schrödinger equations have some novel results. The results in this paper might be helpful for understanding some physical phenomena described in plasmas.  相似文献   

2.
The aim of the present paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics flow problems for regular and irregular geometries subject to Dirichlet, Neumann and Robin boundary conditions. Toward this, the meshless point collocation method (MPCM) is used for MHD flow problems in channels with fully insulating or partially insulating and partially conducting walls, having rectangular, circular, elliptical or even arbitrary cross sections. MPC is a truly meshless and computationally efficient method. The maximum principle for the discrete harmonic operator in the meshfree point collocation method has been proven very recently, and the convergence proof for the numerical solution of the Poisson problem with Dirichlet boundary conditions have been attained also. Additionally, in the present work convergence is attained for Neumann and Robin boundary conditions, accordingly. The shape functions are constructed using the Moving Least Squares (MLS) approximation. The refinement procedure with meshless methods is obtained with an easily handled and fully automated manner. We present results for Hartmann number up to 105105. The numerical evidences of the proposed meshless method demonstrate the accuracy of the solutions after comparing with the exact solution and the conventional FEM and BEM, for the Dirichlet, Neumann and Robin boundary conditions of interior problems with simple or complex boundaries.  相似文献   

3.
徐静  石玉英  王肖玉 《计算物理》2007,24(3):353-360
提出了适用于去模糊问题的外插边值条件,方法在一维信号下具有一阶连续性,在二维图像情况下具有连续性并保持法向导数的连续性.使用两种模型和两个模糊算子与Dirichlet,Neumann及逆反射边值条件进行了比较.之后在基于全变分图像去噪和去模糊问题的快速算法中应用了外插边值条件.数值实验表明了外插边值条件的有效性.  相似文献   

4.
We study the problem of quantizing the classical fields with intrinsic second class constraints in a finite volume in this paper. To illustrate our idea clearly, we study the classical Schrodinger field in a finite volume. We work in the discrete version and take the discrete boundary conditions (BCs) as primary Dirac constraints, both Dirichlet and Neumann BCs are considered. We find it is possible to treat the BCs and intrinsic constraints on the same footing.  相似文献   

5.
Wenli He  Liu Zhao   《Physics letters. [Part B]》2003,570(3-4):251-259
The problem of consistent Hamiltonian structure for O(N) nonlinear sigma model in the presence of five different types of boundary conditions is considered in detail. For the case of Neumann, Dirichlet and the mixture of these two types of boundaries, the consistent Poisson brackets are constructed explicitly, which may be used, e.g., for the construction of current algebras in the presence of boundary. While for the mixed boundary conditions and the mixture of mixed and Dirichlet boundary conditions, we prove that there is no consistent Poisson brackets, showing that the mixed boundary conditions are incompatible with all nontrivial subgroups of O(N).  相似文献   

6.
A path integral is presented that solves a general class of linear second order partial differential equations with Dirichlet/Neumann boundary conditions. Elementary kernels are constructed for both Dirichlet and Neumann boundary conditions. The general solution can be specialized to solve elliptic, parabolic, and hyperbolic partial differential equations with boundary conditions. This extends the well-known path integral solution of the Schrödinger/diffusion equation in unbounded space. The construction is based on a framework for functional integration introduced by Cartier/DeWitt-Morette.  相似文献   

7.
We study existence of helical solitons in the vector modified Korteweg–de Vries (mKdV) equations, one of which is integrable, whereas another one is non-integrable. The latter one describes nonlinear waves in various physical systems, including plasma and chains of particles connected by elastic springs. By using the dynamical system methods such as the blow-up near singular points and the construction of invariant manifolds, we construct helical solitons by the efficient shooting method. The helical solitons arise as the result of co-dimension one bifurcation and exist along a curve in the velocity-frequency parameter plane. Examples of helical solitons are constructed numerically for the non-integrable equation and compared with exact solutions in the integrable vector mKdV equation. The stability of helical solitons with respect to small perturbations is confirmed by direct numerical simulations.  相似文献   

8.
Bright and bright-dark type multisoliton solutions of the integrable N-coupled nonlinear Schrödinger (CNLS) equations with focusing, defocusing and mixed type nonlinearities are obtained by using Hirota’s bilinearization method. Particularly, for the bright soliton case, we present the Gram type determinant form of the n-soliton solution (n:arbitrary) for both focusing and mixed type nonlinearities and explicitly prove that the determinant form indeed satisfies the corresponding bilinear equations. Based on this, we also write down the multisoliton form for the mixed (bright-dark) type solitons. For the focusing and mixed type nonlinearities with vanishing boundary conditions the pure bright solitons exhibit different kinds of nontrivial shape changing/energy sharing collisions characterized by intensity redistribution, amplitude dependent phase-shift and change in relative separation distances. Due to nonvanishing boundary conditions the mixed N-CNLS system can admit coupled bright-dark solitons. Here we show that the bright solitons exhibit nontrivial energy sharing collision only if they are spread up in two or more components, while the dark solitons appearing in the remaining components undergo mere standard elastic collisions. Energy sharing collisions lead to exciting applications such as collision based optical computing and soliton amplification. Finally, we briefly discuss the energy sharing collision properties of the solitons of the (2+1) dimensional long wave-short wave resonance interaction (LSRI) system.  相似文献   

9.
We investigate integrable boundary conditions (BCs) for the principal chiral model on the half-line, and rational solutions of the boundary Yang-Baxter equation (BYBE). In each case we find a connection with (type I, Riemannian, globally) symmetric spaces G/H: there is a class of integrable BCs in which the boundary field is restricted to lie in a coset of H; these BCs are parametrized by G/H×G/H; there are rational solutions of the BYBE in the defining representations of all classical G parametrized by G/H; and using these we propose boundary S-matrices for the principal chiral model, parametrized by G/H×G/H, which correspond to our boundary conditions.An erratum to this article can be found at  相似文献   

10.

We derive the macroscopic laws that govern the evolution of the density of particles in the exclusion process on the Sierpinski gasket in the presence of a variable speed boundary. We obtain, at the hydrodynamics level, the heat equation evolving on the Sierpinski gasket with either Dirichlet or Neumann boundary conditions, depending on whether the reservoirs are fast or slow. For a particular strength of the boundary dynamics we obtain linear Robin boundary conditions. As for the fluctuations, we prove that, when starting from the stationary measure, namely the product Bernoulli measure in the equilibrium setting, they are governed by Ornstein-Uhlenbeck processes with the respective boundary conditions.

  相似文献   

11.
肖奎  刘文彪 《中国物理》2006,15(12):3044-3048
The stress tensor of a massless scalar field satisfying a mixed boundary condition in a (1 + 1)-dimensional Reissner- Nordstrom black hole background is calculated by using Wald's axiom. We find that Dirichlet stress tensor and Neumann stress tensor can be deduced by changing the coefficients of the stress tensor calculated under a mixed boundary condition. The stress tensors satisfying Dirichlet and Neumann boundary conditions are discussed. In addition, we also find that the stress tensor in conformal flat spacetime background differs from that in flat spacetime only by a constant.  相似文献   

12.
We consider the Laplacian in a curved two-dimensional strip of constant width squeezed between two curves, subject to Dirichlet boundary conditions on one of the curves and variable Robin boundary conditions on the other. We prove that, for certain types of Robin boundary conditions, the spectral threshold of the Laplacian is estimated from below by the lowest eigenvalue of the Laplacian in a Dirichlet-Robin annulus determined by the geometry of the strip. Moreover, we show that an appropriate combination of the geometric setting and boundary conditions leads to a Hardy-type inequality in infinite strips. As an application, we derive certain stability of the spectrum for the Laplacian in Dirichlet–Neumann strips along a class of curves of sign-changing curvature, improving in this way an initial result of Dittrich and Kříž (J. Phys. A, 35:L269–275, 2002).   相似文献   

13.
The general theorem of LaChapelle [Path Integral Solution of Linear Second Order Partial Differential Equations. I. The General Case, preprint (2003)] is specialized to obtain path integrals that are solutions of elliptic, parabolic, and hyperbolic linear second order partial differential equations with Dirichlet/Neumann boundary conditions. The construction is checked by evaluating several known kernels for regions with planar and spherical boundaries. Some new calculational techniques are introduced.  相似文献   

14.
We explore new analytical solutions for the two-dimensional nonlinear elliptic Bratu equation. Through the point transformation, the integrable form of Bratu equation was investigated then we obtain the Lie infinitesimals for the new equation. These vectors reduce the integrable equation to solvable ODEs then we use the boundary conditions (BCs) to spin two new exact solutions for Bratu equation in a unit square domain. A three-dimensional plot illustrates some resulting solutions. Comparison with other work has been presented.  相似文献   

15.
The Hirota equation can be used to describe the wave propagation of an ultrashort optical field. In this paper, the multi-component Hirota (alias n-Hirota, i.e. n-component third-order nonlinear Schrödinger) equations with mixed non-zero and zero boundary conditions are explored. We employ the multiple roots of the characteristic polynomial related to the Lax pair and modified Darboux transform to find vector semi-rational rogon-soliton solutions (i.e. nonlinear combinations of rogon and soliton solutions). The semi-rational rogon-soliton features can be modulated by the polynomial degree. For the larger solution parameters, the first m (m < n) components with non-zero backgrounds can be decomposed into rational rogons and grey-like solitons, and the last nm components with zero backgrounds can approach bright-like solitons. Moreover, we analyze the accelerations and curvatures of the quasi-characteristic curves, as well as the variations of accelerations with the distances to judge the interaction intensities between rogons and grey-like solitons. We also find the semi-rational rogon-soliton solutions with ultra-high amplitudes. In particular, we can also deduce vector semi-rational solitons of the n-component complex mKdV equation. These results will be useful to further study the related nonlinear wave phenomena of multi-component physical models with mixed background, and even design the related physical experiments.  相似文献   

16.
非线性Poisson方程在化学、化工及生物等领域有着广泛的应用。本文发展了一种基于格子演化的新算法-格子Poisson方法(LPM),并且给出了Dirichlet边界条件和Neumann边界条件的实现方法。本方法不需要对方程进行线化处理,直接求解非线性方程,适用范围广泛。Dirichlet边界与Neumann边界的数值模拟结果与多重网格法等结果符合很好,验证了该方法在求解非线性Poisson方程的正确性与有效性。本方法非常适合并行计算,并方便扩展到三维情况。  相似文献   

17.
Heat Kernel Asymptotics of Zaremba Boundary Value Problem   总被引:1,自引:0,他引:1  
The Zaremba boundary-value problem is a boundary value problem for Laplace-type second-order partial differential operators acting on smooth sections of a vector bundle over a smooth compact Riemannian manifold with smooth boundary but with discontinuous boundary conditions, which include Dirichlet boundary conditions on one part of the boundary and Neumann boundary conditions on another part of the boundary. We study the heat kernel asymptotics of Zaremba boundary value problem. The construction of the asymptotic solution of the heat equation is described in detail and the heat kernel is computed explicitly in the leading approximation. Some of the first nontrivial coefficients of the heat kernel asymptotic expansion are computed explicitly. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
M Lakshmanan  R Radha 《Pramana》1997,48(1):163-188
We briefly review the recent progress in obtaining (2+1) dimensional integrable generalizations of soliton equations in (1+1) dimensions. Then, we develop an algorithmic procedure to obtain interesting classes of solutions to these systems. In particular using a Painlevé singularity structure analysis approach, we investigate their integrability properties and obtain their appropriate Hirota bilinearized forms. We identify line solitons and from which we introduce the concept of ghost solitons, which are patently boundary effects characteristic of these (2+1) dimensional integrable systems. Generalizing these solutions, we obtain exponentially localized solutions, namely the dromions which are driven by the boundaries. We also point out the interesting possibility that while the physical field itself may not be localized, either the potential or composite fields may get localized. Finally, the possibility of generating an even wider class of localized solutions is hinted by using curved solitons.  相似文献   

19.
Laplace’s equation with mixed boundary conditions, that is, Dirichlet conditions on parts of the boundary and Neumann conditions on the remaining contiguous parts, is solved on an interior planar domain using an integral equation method. Rapid execution and high accuracy is obtained by combining equations which are of Fredholm’s second kind with compact operators on almost the entire boundary with a recursive compressed inverse preconditioning technique. Then an elastic problem with mixed boundary conditions is formulated and solved in an analogous manner and with similar results. This opens up for the rapid and accurate solution of several elliptic problems of mixed type.  相似文献   

20.
In this paper, we investigate some new interesting solution structures of the(2+1)-dimensional bidirectional Sawada–Kotera(bSK) equation. We obtain soliton molecules by introducing velocity resonance. On the basis of soliton molecules, asymmetric solitons are obtained by changing the distance between two solitons of molecules. Based on the N-soliton solutions,several novel types of mixed solutions are generated, which include the mixed breather-soliton molecule solution by the module resonance of the wave number and partial velocity resonance,the mixed lump-soliton molecule solution obtained by partial velocity resonance and partial long wave limits, and the mixed solutions composed of soliton molecules(asymmetric solitons), lump waves, and breather waves. Some plots are presented to clearly illustrate the dynamic features of these solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号