首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
正1.引言化石能源日益短缺的危机使得可再生能源和能量存储技术受到广泛关注。基于在能量存储方面的优异表现,锂离子电池被认为是极具发展前景的电化学储能体系之一,其在民用、国防和航空航天等领域显示出强大的应用潜力。锂离子电池又称摇椅电池,其储放能过程如图1所示。锂离子电池的性能主要受到电极材料、电解质和器件组装技术等因素的制约,而正负极材料是决定电池性能的关键所在。现阶段研究的负极材料,依据电极反应的机理来划分,主要有嵌入型、合金反应型以及转换反应型三大类。然而由于三种类型电极材料的固有缺点如理论  相似文献   

2.
相对于传统锂离子电池,全固态锂电池具有安全性能高、循环寿命长、能量密度高等优点,是目前锂电池研究领域的热点之一.作为全固态锂电池的核心组成部分,固体电解质是实现全固态锂电池高性能的关键材料.本文设计了一种高分子-锂盐-陶瓷的复合物固体电解质.通过多种固体核磁共振(NMR)方法研究了该材料中高分子-陶瓷的界面层结构和界面高分子链段的分子运动.  相似文献   

3.
高安全性的固体锂离子电池是目前研究的热点之一,固态电解质是研究全固态电池的关键.磷酸钛铝锂固体电解质(LATP)具有良好的发展空间,因此采用高温固相法,制备锌掺杂LATP(LAZTP)固体电解质,通过XRD、SEM分析对比其物象和形貌特征,并对这两种材料压片进行阻抗分析,研究材料的电化学性能.基于密度泛函理论的第一性原理,研究LAZTP的能带结构和态密度与材料电化学性能的关系.结果表明:所掺杂锌的LATP材料,在球磨工艺下,与LATP相比衍射峰尖锐,材料结晶度良好,都为R-3C结构,LAZTP微观尺度下材料颗粒清晰,呈块状,孔隙均匀致密度较好,离子电导率相比较高,为1.9×10-3S/cm,而制作的LATP的电导率为4.02x10-4 S/cm,掺杂后的电导率明显高出一个数量级.计算得出的LATP能带带隙为0.163 eV和LAZTP能带带隙为0.05 eV,分态密度中Ti-s、Li-s、Al-s峰值尖锐,变化明显,表明掺杂锌后,材料明显提高了导电率和结构稳定性.  相似文献   

4.
本文简要阐述了全固态锂离子电池的特点及其内部热输运研究的意义.介绍并总结了国内外与正极材料、负极材料、固态电解质,以及电极与电解质界面热输运性质相关的实验和理论工作.针对脱嵌锂过程对电极材料热导率的影响机理尚不明确,非晶态转变对电极材料热输运研究的挑战,界面热输运模型与方法不足等问题,系统梳理了全固态锂离子电池内部热输运的重要前沿科学问题.  相似文献   

5.
固态电解质被认为是解决传统液态锂金属电池安全隐患和循环性能的关键材料,但仍然存在离子电导率低,界面兼容性差等问题.设计兼顾力学性能、离子电导率和电化学窗口的有机-无机复合型固态电解质材料是发展全固态锂电池的明智选择.近年来,基于无机填料与聚合物电解质的有机-无机复合电解质备受关注.设计与优化复合电解质结构对提高复合电解质综合性能具有重要意义.本文详细梳理了有机-无机复合固态电解质在全固态锂电池中展现的多方面优势,从满足不同性能需求的复合电解质结构设计角度出发,综述了有机-无机复合电解质在锂离子传导、锂枝晶的抑制、界面稳定性和相容性等方面的研究进展,并对有机-无机复合电解质的未来发展趋势和方向进行了展望.  相似文献   

6.
开发高能量密度、长循环寿命、低成本和高安全性的全固态锂电池是发展下一代锂离子电池的重要方向之一.富锂层状氧化物正极材料由于阴阳离子协同参与氧化还原反应,可以提供更高的放电比容量(>250 mAh/g)和能量密度(>900 Wh/kg),将其应用于全固态锂电池中有望推动锂离子电池能量密度突破500 Wh/kg的中长期目标.然而,富锂正极材料的电子导电性差、阴离子氧的不可逆氧化还原反应以及循环中的结构相变,导致该材料在电化学循环过程中存在初始库仑效率低、循环稳定性差和电压衰退等问题.此外,富锂正极材料的工作电压较高(>4.5 V vs.Li/Li+),使正极/电解质之间不仅面临常规的界面化学反应,释放的氧还会加剧界面的电化学反应,对正极/电解质的界面稳定性提出了更高的要求.因此,富锂正极材料的本征特性和富锂正极/电解质间严重的界面反应极大限制了富锂正极材料在全固态锂电池中的应用.本文首先详细阐述了富锂正极材料在全固态锂电池中的失效机制,其次综述了近年来富锂正极材料在不同固态电解质体系下的研究进展,最后总结和展望了富锂全固态锂电池未来的研究重点和发展方...  相似文献   

7.
刘慧英  朱梓忠  杨勇 《物理学报》2008,57(8):5182-5190
Mg2Ge有望成为新的锂离子电池负极材料.使用基于平面波展开的第一性原理赝势法,计算并得到了Li嵌入Mg2Ge负极材料时的反应次序.Li首先占据其中的间隙位置,占满间隙位置后随着嵌Li量的进一步增加,Li将逐步替位Mg2Ge中一半的Mg位置,直到生成Li2MgGe.计算结果表明,在整个嵌Li过程中主体材料的体积先膨胀后收缩,体积胀缩量很大,这是导致Mg2Ge作为锂离子电池电极材料循环性能较差的重要 关键词: 锂离子电池 2Ge')" href="#">Mg2Ge 反应次序 电子结构  相似文献   

8.
材料显微结构与性能之间的关联是材料科学领域的基本问题。球差校正透射电子显微镜的成功问世为表征材料原子尺度精细结构、揭示材料结构和性能的关系提供了重要机遇。文章主要从作者自身的研究工作出发,综述了原子分辨球差校正扫描透射成像技术在研究锂离子电池电极材料不同电化学状态下的表/界面结构及其反应机理方面的应用,探讨了电极材料原子尺度结构与性能之间的内在联系。  相似文献   

9.
采用溶液浇铸法将N-甲基-N-丙基哌啶二(三氟甲基磺)亚胺(PP13TFSI)、二(三氟甲基磺)亚胺锂与偏氟乙烯-六氟丙烯共聚物(P(VdF-HFP))混合制备离子液体凝胶聚合物电解质(ILGPEs). 通过扫描电子显微镜观察发现,这种离子液体凝胶聚合物电解质由于液体相的均匀分布而具有疏松的结构. 采用电化学阻抗、计时电流法、线性扫描伏安法测试了电解质的离子电导率、锂离子迁移数和电化学窗口. 室温下离子液体凝胶聚合物电解质的离子电导率和锂离子迁移数分别是0.79 mS/cm和0.71,电化学窗口为0~5.1 Vvs. Li+/Li. 电池性能测试表明,这种离子液体凝胶聚合物电解质在Li/LiFePO4电池中是稳定的,放电容量在30、75和150mA/g倍率下分别为135、117和100 mAh/g,电池经100个循环后容量保持在100%而几乎没有衰减.  相似文献   

10.
索鎏敏  吴兴隆  胡勇胜  郭玉国  陈立泉 《物理》2011,40(10):643-647
文章评述了分级三维离子电子混合导电网络结构和具有该结构的纳微复合电极材料在锂离子电池中的应用等方面的最新研究工作进展.首先介绍了纳微复合电极结构相关概念及其优缺点,然后列举了一些运用此概念设计并构筑出的电极材料实例.研究证明,此新型电极结构能够大幅提高锂离子电池电极材料的储锂性能,并且该结构设计还可推广到其他电化学储能...  相似文献   

11.
锂离子电池中的物理问题及其研究进展   总被引:5,自引:0,他引:5  
施思齐  欧阳楚英  王兆翔 《物理》2004,33(3):182-185
锂离子电池作为一种性能优越的新型可充放电池已经或将要在移动通信、手提式计算机和电动汽车等诸多领域获得广泛的应用 .然而与锂离子电池相关的物理问题却往往被人们忽视 .例如 ,如何从本质上来提高正极材料的体相电子电导率 ,而不是在正极活性物质中添加炭黑之类的电子导电材料 .文章将着重针对与锂离子电池相关的物理问题 ,介绍近年来的主要进展 ,以期待对锂离子电池有更深入的了解 .  相似文献   

12.
The effects of varying LiPF6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium‐ion battery electrolyte solvents (ethylene carbonate–dimethyl carbonate and propylene carbonate) have been investigated. X‐ray Raman scattering spectroscopy (a non‐resonant inelastic X‐ray scattering method) was utilized together with a closed‐circle flow cell. Carbon and oxygen K‐edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li+ ion concentration in the solvent manifests itself as a blue‐shift of both the π* feature in the carbon edge and the carbonyl π* feature in the oxygen edge. While these oxygen K‐edge results agree with previous soft X‐ray absorption studies on LiBF4 salt concentration in propylene carbonate, carbon K‐edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions.  相似文献   

13.
周豪慎  何平  王永刚  李德 《物理》2012,41(2):86-94
石油、天然气等化石能源的枯竭及人类生存环境的进一步恶化,迫使人们寻求和开发清洁可再生能源和高效绿色的储能装置.传统的锂离子电池等已难以满足将来电动汽车等大规模使用的电器对于大容量蓄电装置的要求.文章综述了日本产业技术综合研究所周豪慎教授课题组近年来的研究成果,介绍了组合型电解液的概念及原理,并重点讨论了锂-铜电池和锂-空气电池等基于组合型电解液的后锂离子电池的设计方法和电化学性能.文章指出,组合电解液技术将是开发高能量电化学储能装置的重要思路和有效方法.  相似文献   

14.
Hydroxyl terminated poly(dimethylsiloxane) (PDMS-HT) is used as an electrolyte additive in electrolyte systems containing 1 M LiPF6 in EC:DMC (ratios 1:9; 3:7; 4:6 and 1:1 v/v) to enhance the cycle performance of lithium-ion batteries. Adding a small amount of PDMS-HT to the standard LIB electrolyte leads to improved specific capacity as well as improved capacity retention over prolonged cycles. There is also a slight increase in Li+ ion conductivity when PDMS-HT is added. Also, the PDMS-HT additive allows the formation of a more stable solid electrolyte interface (SEI) layer that enables the LIB cells to be cycled for longer cycles with minimal capacity fading. This combination of improved ionic conductivity and stable SEI layer formation due to the PDMS-HT additive, makes it an excellent candidate for an electrolyte additive for lithium ion batteries.  相似文献   

15.
Growing market demand for portable energy storage has triggered significant research on high‐capacity lithium‐ion (Li‐ion) battery anodes. Various elements have been utilized in innovative structures to enable these anodes, which can potentially increase the energy density and decrease the cost of Li‐ion batteries. In this review, electrode and material parameters are considered in anode fabrication. The periodic table is then used to explore how the choice of anode material affects rate performance, cycle stability, Li‐ion insertion/extraction potentials, voltage hysteresis, volumetric and specific capacities, and other critical parameters. Silicon (Si), germanium (Ge), and tin (Sn) anodes receive more attention in literature and in this review, but other elements, such as antimony (Sb), lead (Pb), magnesium (Mg), aluminum (Al), gallium (Ga), phosphorus (P), arsenic (As), bismuth (Bi), and zinc (Zn) are also discussed. Among conversion anodes focus is placed on oxides, nitrides, phosphides, and hydrides. Nanostructured carbon (C) receives separate consideration. Issues in high‐ capacity research, such as volume change, insufficient coulombic efficiency, and solid electrolyte interphase (SEI) layer stability are elucidated. Finally, advanced carbon composites utilizing carbon nanotubes (CNT), graphene, and size preserving external shells are discussed, including high mass loading (thick) electrodes and electrodes capable of providing load‐bearing properties.  相似文献   

16.
Experimental investigations on a sodium ion conducting gel polymer electrolyte nanocomposite based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), dispersed with silica nanoparticles are reported. The gel nanocomposites have been obtained in the form of dimensionally stable, transparent and free-standing thick films. Physical characterization by X-ray diffraction (XRD), Fourier transform Infra-red (FTIR) spectroscopy and Scanning electron microscopy (SEM) have been performed to study the structural changes and the ion-filler-polymer interactions due to the dispersion of SiO2 nanoparticles in gel electrolytes. The highest ionic conductivity of the electrolyte has been observed to be 4.1 × 10−3 S cm− 1 at room temperature with ~ 3 wt.% of SiO2 particles. The temperature dependence of the ionic conductivity has been found to be consistent with Vogel-Tammen-Fulcher (VTF) relationship in the temperature range from 40 to 70 °C. The sodium ion conduction in the gel electrolyte film is confirmed from the cyclic voltammetry, impedance analysis and transport number measurements. The value of sodium ion transport number (tNa+) of the gel electrolyte is significantly enhanced to a maximum value of 0.52 on the 15 wt.% SiO2 dispersion. The physical and electrochemical analyses indicate the suitability of the gel electrolyte films in the sodium batteries. A prototype sodium-sulfur battery, fabricated using optimized gel electrolyte, offers the first discharge capacity of ~165 mAh g− 1 of sulfur.  相似文献   

17.
锂离子电池多尺度数值模型的应用现状及发展前景   总被引:1,自引:0,他引:1       下载免费PDF全文
程昀  李劼  贾明  汤依伟  杜双龙  艾立华  殷宝华  艾亮 《物理学报》2015,64(21):210202-210202
锂离子电池是一种较为复杂的电化学系统, 其涵盖质量传递、电荷传递、热量传递以及多种电化学反应等物理化学过程. 其不仅物理尺度跨越大, 从微观活性颗粒、极片、电芯跨越到电池模组, 还面临着成组配对以及均衡性的问题, 这些问题加剧了电池设计和性能综合评估的难度. 通过计算机数值仿真技术, 建立数学模型, 全面和系统地捕捉电池工作过程各物理场的相互作用机理, 分析其演化规律, 能够为优化电池系统设计提供理论支撑. 本文对锂离子电池的数值模型研究进展和发展趋势进行了综述. 同时对主要理论模型进行了分类整理, 总结了它们的特点、适用范围和局限性, 指出了将来进一步研究的方向和难点所在, 这些对锂离子电池多尺度数值模型的理论研究和工程应用都具有指导性的意义.  相似文献   

18.
Rechargeable lithium ion cells operate at voltages of ∼4.5 V, which is far beyond the thermodynamic stability window of the battery electrolyte. Strong electrolyte reduction and corrosion of the negative electrode has to be anticipated, which leads to irreversible loss of electroactive material and electrolyte, and thus strongly deteriorates cell performance. To minimize these reactions, negative electrode and electrolyte components have to be combined bringing about the electrolyte reduction products to form an effectively protecting film at the anode/electrolyte interface. This film hinders further electrolyte decomposition reactions and acts as membrane for the lithium cations, i.e., behaves as asolidelectrolytei2nt erphase (SEI). The present paper gives a review of our recent work in the field of negative electrodes in lithium ion batteries. The effects of the graphite anode surface and graphite anode surface modification on the formation of the SEI are discussed in detail by using the example: modification with carbon dioxide. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

19.
Tushagu Abudouwufu 《中国物理 B》2022,31(4):40704-040704
Copper ion conducting solid electrolyte Rb$_{4}$Cu$_{16}$I$_{6.5}$Cl$_{13.5 }$ was prepared by means of mechano-chemical method. The structure and morphology of the powder was investigated by x-ray diffraction and scanning electron microscopy. The grain size was estimated to be 0.2-0.9 μm and the ionic conductivity at room temperature was approximately 0.206 S/cm. The solid electrolyte Rb$_{4}$Cu$_{16}$I$_{6.5}$Cl$_{13.5 }$ was exploited for copper ion beam generation. The copper ion emission current of several nA was successfully obtained at acceleration voltages of 15 kV and temperature of 197 $^\circ$C in vacuum of 2.1$\times10^{-4}$ Pa. A good linear correlation between the logarithmic ion current $(\log I)$ and the square root of the acceleration voltage ($U_{\rm acc}$) at high voltage range was obtained, suggesting the Schottky emission mechanism in the process of copper ion beam generation.  相似文献   

20.
Wenjun Yan 《中国物理 B》2022,31(11):110704-110704
Li dendrites and electrolyte leakage are common causes of Li-ion battery failure. H2, generated by Li dendrites, and electrolyte vapors have been regarded as gas markers of the early safety warning of Li-ion batteries. SnO2-based gas sensors, widely used for a variety of applications, are promising for the early safety detection of Li-ion batteries, which are necessary and urgently required for the development of Li-ion battery systems. However, the traditional SnO2 sensor, with a single signal, cannot demonstrate intelligent multi-gas recognition. Here, a single dual-mode (direct and alternating current modes) SnO2 sensor demonstrates clear discrimination of electrolyte vapors and H2, released in different states of Li-ion batteries, together with principal component analysis (PCA) analysis. This work provides insight into the intelligent technology of single gas sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号