首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We combine the ideas of scaling theory and universal conductance fluctuations with density-functional theory to analyze the conductance properties of doped silicon nanowires. Specifically, we study the crossover from ballistic to diffusive transport in boron or phosphorus doped Si nanowires by computing the mean free path, sample-averaged conductance G, and sample-to-sample variations std(G) as a function of energy, doping density, wire length, and the radial dopant profile. Our main findings are (i) the main trends can be predicted quantitatively based on the scattering properties of single dopants, (ii) the sample-to-sample fluctuations depend on energy but not on doping density, thereby displaying a degree of universality, and (iii) in the diffusive regime the analytical predictions of the Dorokhov-Mello-Pereyra-Kumar theory are in good agreement with our ab initio calculations.  相似文献   

2.
The conductance of a nanoscopic wire decreases in steps when it is stretched until it breaks. This is due to narrowing of the wire whereby quantized conductance channels sequentially close. However the conductance plateaus seldom occur at integral multiples of the quantum of conductance G0 and most steps are much smaller than G0. High speed precision measurements of the conductance steps reveal that the nanowires are composed of not one but several quantized conductors in series and that a step is caused by a quantized conductance change in one of the elements in the sequence. Resolved series conductance quanta up to 20 G0 have been observed at room temperature. The effect is explained in terms of elastic electronic scattering and has important consequences for nano-electronic circuitry.  相似文献   

3.
A new miniature scanning tunneling microscope (STM) holder was developed in order to simultaneously investigate electronic conductance and structure of nanowires in an ultra high-vacuum electron microscope (UHV-TEM). A thin gold wire held between the STM tip and substrate stage of the specimen holder was stretched to form a suspended gold nanowire. The new TEM-STM system allowed us to measure electronic conductance at intervals of 20 ms, and to record high-resolution TEM images on videotape at 30 fps. Suspended gold nanowires formed from [1 1 0] oriented electrodes were well-elongated. In contrast, [1 0 0] and [1 1 1] electrodes produced nanowires with short necks. Electronic conductance was found to change as nanowire structure changed, with conductance quantization in units of 2e2/h, where e is the electron charge and h is Planck’s constant, only being exhibited for well-elongated nanowires.  相似文献   

4.
Novel structures and properties of gold nanowires   总被引:8,自引:0,他引:8  
Wang B  Yin S  Wang G  Buldum A  Zhao J 《Physical review letters》2001,86(10):2046-2049
The structures of free-standing gold nanowires are studied by using molecular-dynamics-based genetic algorithm simulations. Helical and multiwalled cylindrical structures are found for the thinner nanowires, while bulk-like fcc structures eventually form in the thicker nanowires up to 3 nm in diameter. This noncrystalline-crystalline transition starts from the core region of nanowires. The vibrational, electronic, and transport properties of nanowires are investigated based on the optimal structures. Bulklike behaviors are found for the vibrational and electronic properties of the nanowires with fcc crystalline structure. The conductance of nanowires generally increases with wire diameter and depends on the wire structure.  相似文献   

5.
ZnO nanowires were fabricated on c-plane (0 0 0 1), a-plane (1 1 2¯ 0) sapphire, and boron doped p-type (1 0 0) Si substrates in vacuum furnace by simple physical vapor deposition. Room temperature photoluminescence spectra of the nanowires show the near band-edge emission and the deep-level green light emission. The ZnO nanowires formed on sapphire (1 1 2¯ 0) substrates exhibited enhancement on optical properties and better crystalline structures than those of nanowires grown on other substrates. The formation mechanism and the effect of substrate direction on structural and optical properties of the nanowires are discussed.  相似文献   

6.
Based on the scattering-matrix method, the influence of obstacles on the thermal conductance in quantum wire was investigated. Three types of obstacles are employed in our calculation. We present a detailed study of the thermal conductance as a function of distance between two obstacles and temperature. The results show that there is qualitative difference in the dependence of the thermal conductance versus width between two obstacles for different temperatures. We also find that the calculated thermal conductance increases with the width W of quantum wire in all cases.  相似文献   

7.
Transport in disordered armchair graphene nanoribbons (AGR) with long-range correlation between quantum wire contacts is investigated by a transfer matrix combined with Landauer's formula. The metal-insulator transition is induced by disorder in neutral AGR. Therein, the conductance is one conductance quantum for the metallic phase and exponentially decays otherwise, when the length of AGR approaches infinity and far longer than its width. Similar to the case of long-range disorder, the conductance of neutral AGR first increases and then decreases while the conductance of doped AGR monotonically decreases, as the disorder strength increases. In the presence of strong disorder, the conductivity depends monotonically and non-monotonically on the aspect ratio for heavily doped and slightly doped AGR, respectively. For edge disordered graphene nanoribbon, the conductance increases with the disorder strength of long-range correlated disordered while no delocalization exists, since the edge disorder induces localization.  相似文献   

8.
A system of arrays of nanowires side-coupled to a quantum wire is studied. Transport through the quantum wire is investigated by using a noninteracting Anderson tunneling Hamiltonian. An analytical expression of the conductance at zero temperature is given, showing a band with alternating forbidden and allowed minibands due to the discrete structure of the nanowires. A generalization of the odd–even parity symmetry is found in this system, whose conductance exhibits a forbidden miniband in the center of the band for an odd number of sites in the nanowires, while shows an allowed band for an even number.  相似文献   

9.
In this study, we have investigated the stability and conductivity of unsupported, two-dimensional infinite gold nanowires using ab initio density functional theory (DFT). Two-dimensional ribbon-like nanowires with 1–5 rows of gold atoms in the non-periodic direction and with different possible structures have been considered. The nanowires with >2 rows of atoms exhibit dimerization, similar to finite wires, along the non-periodic direction. Our results show that in these zero thickness nanowires, the parallelogram motif is the most stable. A comparison between parallelogram- and rectangular-shaped nanowires of increasing width indicates that zero thickness (111) oriented wires have a higher stability over (100). A detailed analysis of the electronic structure, reveals that the (111) oriented structures show increased delocalization of s and p electrons in addition to a stronger delocalization of the d electrons and hence are the most stable. The density of states show that the nanowires are metallic and conducting except for the double zigzag structure, which is semiconducting. Conductance calculations show transmission for a wide range of energies in all the stable nanowires with more than two rows of atoms. The conductance channels are not purely s and have strong contributions from the d levels, and weak contributions from the p levels.  相似文献   

10.
We have investigated the magnetoresistance of carbon-coated Co nanowires with various widths down to w=32 nm at low temperatures (T=4.2 K). The nanowires and their non-magnetic contact pads are prepared by means of a three-step electron beam lithography (EBL) process in a LEO secondary electron microscope. We obtain wires with highest quality by using specifically customized resist systems with undercut. The longitudinal magnetoresistance shows pronounced features at the coercive fields Hc—where Hc increases with decreasing wire width as —indicating a magnetization reversal process accomplished by domain nucleation and traversal. In contrast, the transverse and perpendicular magnetoresistance continuously decrease to their saturation values which can be understood in terms of a coherent rotation of the magnetization using the anisotropic magnetoresistance.  相似文献   

11.
段玲  胡飞  丁建文 《物理学报》2011,60(11):117201-117201
考虑实际体系的梯度无序和结散射,发展格林函数矩阵分解消元方法,研究了准一维纳米线的电子输运性质. 结果表明,由于结散射,电导随能量呈现振荡行为,无序的引入破坏了电子相干性,在低无序度区平均电导呈现异常增加,呈现一个新的电导峰. 当表面存在无序但无梯度衰减时,体系的平均电导随无序度增强先减后增,出现类局域-退局域性转变. 当表面无序线性衰减时,平均电导在强无序区稍有增加,而当表面无序高斯型衰减时,平均电导指数衰减,类局域-退局域性转变消失,不同于以前的理论预言. 研究结果对准一维纳米线电子器件的结构设计和应用有指导作用. 关键词: 准一维纳米线 梯度无序 电子输运  相似文献   

12.
Quantum-mechanical calculations of the conductance for model devices, consisting of dual semi-infinite quantum wires connected in series by a cavity, are carried out with use of the coupled-mode transfer method and mode matching technique. The effects of the mode-mode coupling and geometry-induced scattering on the quantum conductance are in detail studied by varying the geometric structure of the cavity. There are no traces of quantization conductance. The pattern of the conductance displays many peaks and dips. The threshold energy of the first onset of the conductance is lower than the normal value for opening the propagation channel of the lowest subband in the quantum wire. The overall character of the conductance exhibits heavy fluctuations around the classical conductance for the relevant point contact. The fluctuation amplitude is of order of 2e 2/h, similar to universal conductance fluctuations. The oscillatory structure becomes rich and dense as the scale of the cavity increases. There is a global trend for the conductance to rise as the cavity is compressed. The structures of resonant peaks and antiresonance dips in the conductance are originated from the mode coupling among the subbands in the cavity and quantum wires. The heavy conductance fluctuation may be caused by the quantum interference of the electron waves due to the multiple scattering (reflections) of electrons by the cavity boundaries.  相似文献   

13.
A scattering approach for correlated one-dimensional systems is developed. The perfect contact to charge reservoirs is encoded in time-dependent boundary conditions. The conductance matrix for an arbitrary gated wire, respecting charge conservation, is expressed through a dynamic scattering matrix. Two applications are developed. First, it is shown that the dc conductance is equal to e 2/h for any model with conserved total left- and right-moving charges. Second, the ac conductance matrix is explicitly computated for the Tomonaga-Luttinger model (TLL). Received 31 August 1998  相似文献   

14.
姚凌江  王玲玲 《物理学报》2008,57(5):3100-3106
采用散射矩阵方法,研究了在应力自由和硬壁两种典型的边界条件下含半圆弧形腔的量子波导中声学声子输运和热导性质.结果表明在两种边界条件下声子透射谱和热导有着不同的特征.在应力自由边界条件下,能观察到普适的量子化热导现象,当结构为一理想的量子线时,在低温区域有一个量子化平台出现,而当半圆弧形结构存在时,非均匀横向宽度引发的弹性散射使得量子化平台被破坏;在硬壁边界条件下,不可能观察到量子化热导现象,热导随温度的增加单调上升;计算结果表明还可以通过调节半圆弧形结构的半径来调控声子的输运概率和热导. 关键词: 声学声子输运 热导 量子体系  相似文献   

15.
Silver nanowires     
Free silver nanowires were produced in aqueous electrolyte by a novel chemical reaction. Their diameters are about 27 nm, the lengths range up to more than 70 μm, yielding extreme length to thickness-ratios up to 2500. Their structure was identified by TEM analysis (SAED) and HRTEM to consist of a lattice aligned bundle of five monocrystalline rods of triangular cross-section forming an almost regular pentagonal cross-section. It is demonstrated that, for application purposes, single free nanowires can be mounted between contact areas. This manipulation is enabled by observing the nanowires in real time at atmosphere by Zsigmondy-Siedentopf farfield darkfield microscopy. Experimental results are presented concerning electrical dc–conductivity and optical plasmon polariton excitation, the latter obtained from a single free wire without substrate and a single wire deposited on quartz glass. We also report about a present research cooperation with the Graz group of Aussenegg and Krenn which is devoted to investigate plasmon propagation in our Ag nanowires and to prove application possibilities as information guide fibers – in analogy to optical fibers – which may be integrated into micro- and nanoelectronic circuits.  相似文献   

16.
The quantum conductance for electrons scattering from a uniform scatterer in a narrow-wire semiconductor is calculated. Instead of getting the conductance directly from the calculation of transmission coefficient, we calculate the reflection coefficient instead. The transmission coefficient is then calculated by using the conservation law, T=IR. This alternative method can avoid the instability of the conductance obtained by including more evanescent modes for a finite-range scatterer in a narrow-wire semiconductor. This method is applied to a semi-infinite strip potential barrier and a rectangular potential barrier in a narrow wire. The quantum stepwise conductance is obtained in both cases. For a repulsive rectangular potential barrier, there are oscillations in each stepwise conductance. For an attractive rectangular potential barrier, there exist multiple quasi-bound states below the sub-band energies which can cause the drop of the quantum conductance. The effect of the continuum quasi-bound states diminishes as the energy of the incident electron increases, but the influence of the discrete quasi-bound states still persists.  相似文献   

17.
Co x Pt1−x (x≥0.7) alloy nanowires are grown into self-synthesized anodic alumina templates by electrodeposition. Magnetic and magnetization properties of Co x Pt1−x alloy nanowires are measured as functions of wire length, temperature, and field orientation. X-ray diffraction shows that as-prepared CoPt nanowires are of fcc polycrystalline structure. A crossover of easy axis of magnetization is observed from parallel to perpendicular of the nanowire axis as a function of length. The coercivity (H c) and remanent squareness (SQ) of Co x Pt1−x nanowire arrays are derived from hysteresis loops measured at various angles (θ) between the field and wire axis. H c(θ) and SQ(θ) curves show bell-shaped or otherwise bell-shaped behavior corresponding to the easy axis of their magnetization.  相似文献   

18.
The structural, electronic and magnetic properties of hcp transition metal (TM = Fe, Co or Ni) nanowires TM4 encapsulated inside zigzag nanotubes C(m, 0) (m = 7, 8, 9, 10, 11 or 12), along with TM n (n = 4, 10 or 13) encapsulated inside C(12, 0), have been systematically investigated using the first-principle calculations. The results show that the TM nanowires can be inserted inside a variety of zigzag carbon nanotubes (CNTs) exothermically, except from the systems TM4@(7, 0) and TM13@(12, 0) which are endothermic. The charge is transferred from TM nanowires to CNTs, and the transferred charge increases with decreasing CNT diameter or increasing nanowire thickness. The magnetic moments of hybrid systems are smaller than those of the freestanding TM nanowires, especially for the atoms on the outermost shell of the nanowires. The magnetic moment per TM atom of TM/CNT system increases with increasing CNT diameter or decreasing nanowire thickness. Both the density of states and spin charge density analysis show that the spin polarization and the magnetic moments of all hybrid systems mainly originate from the TM nanowires, implying these systems can be applied in magnetic data storage devices.  相似文献   

19.
In this paper we report some of the important results of experimental investigations of the flicker noise near the metal-insulator (MI) transition in doped silicon single crystals. This is the first comprehensive work to study low-frequency noise in heavily doped Si over an extensive temperature range (2 K<T<500 K). The measurements of conductance fluctuations (flicker noise) were carried out in the frequency range 10−2<f<4 × 101 Hz in single crystalline Si across the MI transition by doping with phosphorous and boron. The magnitude of noise in heavily doped Si is much larger than that seen in lightly doped Si over the whole temperature range. The extensive temperature range covered allowed us to detect two distinct noise mechanisms. At low temperatures (T<100 K) universal conductance fluctuations (UCF) dominate and the spectral dependence of the noise is determined by dephasing the electron from defects with two-levels (TLS). At higher temperatures (T>200 K) the noise arises from activated defect dynamics. As the MI transition is approached, the 1/f spectral power, typical of the metallic regime, gets modified by the presence of discrete Lorentzians which arise from generation-recombination process which is the characteristic of a semiconductor.  相似文献   

20.
We have developed the mechanically controllable break junction setup with an electrochemical cell (EC-MCBJ) to measure the electric conductance of metal nanowires under electrochemical potential control. The electric conductance of Au nanowires was investigated in 0.1 M Na2SO4 solution using EC-MCBJ. The conductance of the Au nanowires was quantized in units of G0 (=2e2/h), showing clear features in the conductance histogram. The atomic contact with a specific conductance value was kept for >5 s, indicating the relatively high stability of the present EC-MCBJ system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号