首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen vacancy effect on the electronic state of Pt/NiO/Pt capacitor-like system is theoretically investigated by density functional theory (DFT) based first-principles calculations. The potential energy profile for electrons at the interface between Pt and NiO is found to play a major role on the transport properties alternations where conduction path begin to construct. Oxygen vacancies effect is summarized in the induction of a spatially localized spin-polarized state near the Fermi level of the surrounding Ni ions. Also, electron transport through O vacancy filaments (conduction paths) is via s-orbital sub-bands. We have found that the absence or presence of a vacancy near the interface at the edges of the vacancy filament causes a conductance jump from ~0 to 1e2/h respectively which corresponds to clearly observable switching.  相似文献   

2.
Metallic Ni, vapor-deposited on NiO(001) near room temperature, could be gradually oxidised upon annealing between 800 K and 940 K in Ultra High Vacuum (UHV), as evidenced by X-ray Photoelectron Spectroscopy for initial Ni coverage of 1.6, 3.8 and 7.5 equivalent monolayers (ML). The time dependence of the oxidation process was consistent with a diffusion mechanism, supplying oxygen via the NiO crystal to a coalesced particulate deposit and resulting in an oxide shell, which grew over the entire surface and enclosed a shrinking metallic core. Similar to the well known behaviour upon gas phase oxidation, the process was fast within a depth of two atomic layers of Ni, limited by the diffusive supply of oxygen from the substrate. Molecular Dynamics Simulations for 0.06, 0.11 and 0.22 ML of Ni ions deposited on a model NiO(001) substrate indicated the formation of NiO islands via oxygen ions transferred from the surface and near-surface layers of the crystal. A significant atomic concentration of oxygen vacancies of the order of 10 to 20% could be created in each underneath layer, before the next one started donating lattice anions. This suggests a possible explanation for the aforementioned NiO-substrate-induced oxidation of deposited Ni, whereby the formation of oxygen vacancies inside the crystal supplies the necessary oxygen.  相似文献   

3.
We have applied in situ environmental transmission electron microscopy (ETEM) to follow the dynamic phase transformations that take place in SiO(2) supported Ni nanoparticles during oxidation and reduction processes. The gas environments used for in situ ETEM studies were relevant to partial oxidation of methane (POM) reaction. In the presence of the CH(4)+O(2) gas mixture (in 2:1 ratio) at 400°C, Ni transforms to NiO due to the high O-chemisorption energy. NiO void structures were formed during the oxidation because of the Kirkendall type process where diffusion of Ni cations along NiO grain boundaries is eight orders of magnitude greater than the diffusion of O anions. Reduction was performed under a CO+H(2) mixture at 400°C (in 1:2 ratio) and also in the presence of CH(4) at 500°C. Particle reduction processes also takes place via the diffusion of Ni cations along the NiO grain boundaries leaving NiO on the surface of the nanoparticle. NiO is the phase that is present on the surface of the nanoparticle during the intermediate stage of reduction.  相似文献   

4.
We investigate effects of oxygen vacancies on adhesion behavior of incoherent Ni/MgO(0 0 1) interface with large misfit, based on the density functional theory. We demonstrate that oxygen vacancies at any local atomic configuration of the incoherent geometry enhance the image-chargelike interaction between the ions in MgO and the ion-induced images in Ni, and stabilize adhesion of the Ni/MgO(0 0 1) interface. The adhesion energy of the defective interface is remarkably larger than that of the perfect interface. We also show that force constants of the adhesive interactions near the oxygen vacancies are comparable to the Ni-Mg bond at the perfect interface. The vacancy-induced enhancement of the image electron accumulation hardly contributes to the interfacial stiffness, while it is reduced by losing the covalent Ni-O interaction due to an ontop oxygen vacancy.  相似文献   

5.
Native vacancy defects in typical strongly correlated oxides NiO have been investigated using the GGA+U method. The defect formation energies under different conditions are determined and magnetisms induced by vacancies are studied. Our results indicate that the predominant defect is Ni vacancy under oxygen-rich condition and the most stable ionization state varies with different Fermi level. The Ni vacancy forms shallow acceptor, suggesting the native p-type conductivity originates from the cation vacancy. In addition, after introducing a Ni vacancy, a half-metallic antiferromagnet or half-metallic ferromagnet can form according to different ionization state of cation vacancy.  相似文献   

6.
Micron thick silver films, vapour deposited onto high purity polycrystalline nickel substrates, dewet the substrate after high temperature annealing in oxygen rich atmospheres, while the films remain stable after annealing at the same temperature in a nitrogen atmosphere. Dewetting occurs when a nickel oxide layer is formed at the silver-nickel interface as a consequence of oxygen diffusion through the silver film.The sensitivity of the dewetting process on various parameters such as the annealing: temperature, time and oxygen partial pressure has been determined.Scanning Electron Microscopy (SEM) of cross-sections reveal that the main mechanism of dewetting at short annealing time is the nucleation of cavities at the Ag-NiO interface which grow towards the free surface of the Ag film. They are formed not only at Ag grain boundaries and triple junctions but also in the core of Ag grains. Such cavities do not occur when the Ag film is deposited onto a NiO single crystal. We propose a simple model for the cavitation: a vacancy supersaturation is sustained in Ag, at the Ag-NiO interface, as a result of oxygen consumption by the oxidation reaction. In regions of fast oxidation, the vacancy supersaturation is large enough to promote the nucleation and growth of interfacial cavities. The model qualitatively accounts for all the observed trends; quantitatively, on top of the vacancy supersaturation, extra-contributions to the driving force for cavitation must be invoked.  相似文献   

7.
Porous semiconductor compound nanoparticles have been prepared by a new technique utilizing electronic excitation. The porous structures are formed in GaSb particles, when vacancies are efficiently introduced by electronic excitation and the particle size is large enough to confine the vacancy clusters. The capture cross section of the surface layer in particles for the vacancies is smaller than that for the interstitials. Under the condition of supersaturation of vacancies in the particle core, porous structures are produced through the vacancy clusters to a void formation.  相似文献   

8.
A general method of obtaining hollow nanoparticles by utilizing the Kirkendall effect has been reported recently. We examine here the thermal instability of hollow nanoparticles. The difference of vacancy concentrations at the inner and outer surfaces of a nanoshell will generate an outflux of vacancies and transform it into a solid nanoparticle. Phenomenological as well as kinetic Monte Carlo modeling has been applied to analyse the shrinking kinetics of nanoshells, consisting of either a pure element or an intermetallic compound with large difference of partial diffusivities of the components. Shrinking kinetics and time to collapse to solid particles are demonstrated to be determined mainly by the slow diffusant, making compound nanoshells more stable than anticipated.  相似文献   

9.
栗苹  许玉堂 《物理学报》2017,66(21):217701-217701
基于氧空位在金属氧化物内部迁移的微观机理,利用蒙特卡罗方法建立了一种新型的可模拟金属氧化物介质时变击穿的模拟工具.利用建立的模拟工具研究了界面形成氧空位迁移功函数对介质层击穿行为的影响.该工具可应用于金属氧化物半导体晶体管栅介质击穿研究并准确评估其可靠性.  相似文献   

10.
The diffusivities of 60Co and 57Ni, and the electrical semiconductivity in (Co,Ni)O crystals have been determined as a function of temperature and composition in an air atmosphere. Both 60Co and 57Ni diffuse by a vacancy mechanism. Their diffusivities increase exponentially with an increase cation fraction of cobalt in the mixed oxides at a constant temperature. Using Manning's model of diffusion in a random alloy, the relative extent of off-stoichiometry and, therefore, the concentration of cation vacancies relative to NiO as a function of c in (CocNi1?c)O were evaluated from the diffusion data. The change in enthalpy of formation of a cation vacancy as a function of the cation composition in mixed oxides has also been deduced from the experimental results. From a comparison of the cation composition dependency characteristic of the electrical semiconductivity with that of the cation vacancy cocentration, it was deduced that the apparent number of effective negative charge on a cation vacancy varies almost linearly from two in NiO to almost unity in CoO. Interdiffusion experiments show that a net flow of cations in one direction in a CoO?NiO diffusion couple will produce a gradient in the oxygen activity that can alter the diffusion behavior of the sample.  相似文献   

11.
NiO–yttria stabilised zirconia (YSZ) hollow fibres with varying NiO content and a desired microstructure were prepared using a phase inversion technique and sintering. By controlling the fabrication parameters, microstructures with predominately finger-like pores near the inner and outer surfaces and a denser central layer with sponge-like pores were produced, for use as substrates for anode-supported hollow fibre solid oxide fuel cells (HF-SOFC). The NiO–YSZ fibres were reduced to Ni–YSZ at 250–700 °C in hydrogen flowing at 20 cm3 min? 1 to produce Ni–YSZ hollow fibres, the mechanical and electrical properties of which were determined subsequently, reduction to Ni being verified by X-ray diffraction. The effects of NiO concentration and sintering temperature of the fibre precursors on the conductivity, strength and porosity of the reduced hollow fibres were investigated to assess their suitability for use as anode substrates. As expected, increasing Ni concentration increased electrical conductivities and decreased mechanical strength. Sintering temperature had a critical effect in producing axially conductive hollow fibres of sufficient mechanical strength for use as SOFC anodes. The hollow fibres retained their initial microstructure through the reduction process, though ca. 41% volume contraction is predicted on reduction of NiO to Ni, producing increased porosity in the reduced fibres. The mean porosity of the Ni–YSZ hollow fibres was ca. 60% and ca. 40% after sintered at 1250 °C and 1400 °C, respectively. The mean pore sizes for all the fibres after reduction varied between ca. 0.3 and 1 µm. The hollow fibres produced with 60% NiO, of length ca. 300 mm, electrical conductivities of ca. (1–2.25) × 105 S m? 1 and a porosity of ca. 43% are being used currently to construct and test the electrical behaviour of an anode-supported HF-SOFC.  相似文献   

12.
Microstructural and chemical changes in a NiO-YSZ electrocatalytic electrode were studied. The microstructural changes in the NiO-YSZ electrocatalytic electrode after the cell operation was compared with the electrode quenched under the applied voltage to suppress the oxidation process. The reversible reduction of NiO into Ni and the formation of intergranular Ni layers at the NiO/YSZ interface were investigated. It was shown that in a compositional range of the NiO-YSZ electrodes from 1/3 to 2/3 the value of the ambipolar conductivity increased with increasing voltage applied to the electrochemical cell. The observed reversible increase in the value of ambipolar conductivity of the electrocatalytic electrode is described in frames of the model of reversible reduction of NiO into Ni under the conditions of cell operation.  相似文献   

13.
Chemical synthesis coupled with a microwave irradiation process allowed for the control of size (6–40 nm), shape, and shell thickness of Ni/NiO core/shell nanoparticles. In this unique synthetic route, the size of Ni nanoparticles (NiNPs) was strongly influenced by the nickel salt-to-stabilizer ratio and the amount of the stabilizer. Interestingly, it was observed that the shape of the nanoparticles was altered by varying the reaction time, where longer reaction times resulted in annealing effects and rupture of the stabilizer micelle leading to distinct shapes of Ni/NiO core/shell nanostructures. Product cooling rate was another important parameter identified in this study that not only affected the shape, but also the crystal structure of the core/shell nanoparticles. In addition, a simple and cost-effective method of microwave irradiation of NiNPs led to the formation of distinctly shaped hollow NiO nanoparticles. These high surface area core/shell nanoparticles with well-controlled morphologies are important and can lead to significant advancement in the design of improved fuel cells, electrochromic display devices, and catalysis systems.  相似文献   

14.
Conclusions The Ni3Al–Ni3Nb alloys are oxidized as a result of the diffusion of oxygen ions toward the interface between the alloy and the oxidation product. This diffusion produces a relatively thick inner layer of complex composition; in addition, diffusion of nickel ions toward the interface between the oxidation product and the gas results in the formation of a thin outer layer of NiO. At any temperature, NiO in the inner oxide is reduced to Ni by niobium atoms. During the initial stages of the oxidation, the reduction occurs at the oxide-alloy inter face; during the later stages, it occurs at the interface between the oxide and the suboxide layer. Protective double oxides of NiO · Nb2O5 (t = 700–725 °) and NiO · Al2O3 (t = 800–850 °) form in the oxidation product. An -Nb2O5 conversion occurs at 825–900 ° and considerably reduces the oxidizability of the alloys. The -Nb2O5 lattice probably contains fewer oxygen vacancies than the -Nb2O5 lattice and thus has better protective properties.Translated from Izvestiya VUZ. Fizika, No. 12, pp. 75–83, December, 1969.  相似文献   

15.
High energy density materials such as NiO that undergoes conversion reaction hold promise for lithium (Li)-ion batteries (LIBs). However, porous NiO experiences substantial volume change due to the diffusion-induced stress during electrochemical operation, which causes mechanical fractures and morphological changes of porous NiO electrodes, leading to capacity fade through internal short circuit (ISCr). In this study, both non-destructive and destructive operations were used to visualize and quantify the origins and evolutions of the capacity fading of porous NiO/Ni foam electrodes. Results indicated that charge transfer resistance was dominant among all the internal resistances before ISCr, whereas solid electrolyte interface (SEI) resistance was dominant after ISCr of LIBs. The generation of the large amount of heat and pressure during ISCr caused the volume expansion and the formation of the micro-cracks in the struts of the porous NiO/Ni foam electrodes. Together with the electrolyte decomposition, this led to capacity fade. The results of this study provide insights for developing of NiO/Ni electrode for LIBs.  相似文献   

16.
Ta/NiO/NiFe/Ta multilayers, utilizing Ta as the buffer layer, were prepared by RF reactive and DC magnetron sputtering. The exchange coupling field between NiO and NiFe reached a maximum value of 120 Oe at a NiO film thickness of 50 nm. The composition and chemical state at the interface region of Ta/NiO/Ta were studied using the X-ray photoelectron spectroscopy (XPS) and peak decomposition technique. The results show that there is an `intermixing layer’ at the Ta/NiO (and NiO/Ta) interface due to a thermodynamically favorable reaction: 2Ta+5NiO=5Ni+Ta2O5. This interface reaction has an effect on the exchange coupling. The thickness of the `intermixing layer’ as estimated by XPS depth-profiles was about 8–10 nm.  相似文献   

17.
CO oxidation reactivity of bare and TiO2-coated nanoparticles consisting of both NiO and Ni(OH)2 surfaces was studied. For the deposition of TiO2, atomic layer deposition was used, and formation of three-dimensional domains of TiO2 on NiO-Ni(OH)2 could be identified. Based on the data of X-ray Photoelectron Spectroscopy, we suggest that upon TiO2 deposition only Ni(OH)2 was remained on the surface, whereas NiO surface disappeared. Both CO adsorption and CO oxidation took place on NiO-Ni(OH)2 surfaces under our experimental conditions. CO adsorption was almost completely suppressed after TiO2 deposition, whereas CO oxidation activity was maintained to large extent. It is proposed that bare NiO cannot be active for CO oxidation, and can only uptake CO under our experimental condition, whereas hydroxylated surface of NiO can be active for CO oxidation.  相似文献   

18.
 利用强流脉冲(HCPEB)电子束技术,对AISI 304L奥氏体不锈钢进行了辐照处理,并利用透射电子显微镜对HCPEB诱发的空位簇缺陷进行了表征。实验结果表明,HCPEB辐照金属可在辐照表层诱发大量的过饱和空位,并形成空位型位错圈和堆垛层错四面体(SFT)。利用金相显微镜、扫描电子显微镜和非接触式光学轮廓仪,对其表面形貌进行了详细的表征,发现电子束处理后的样品表面形成了高密度、弥散分布和尺寸细小的微孔,表面微孔是由于HCPEB轰击诱发的大量空位(簇)缺陷,以线或面等结构缺陷为路径,向表层迁移导致空位的累积而形成的。采用HCPEB技术,选择合适的材料和辐照工艺参数,可以成功地制备出表面多孔金属材料。  相似文献   

19.
The influence of the insertion of an ultrathin NiO layer between the MgO barrier and the ferromagnetic electrodes in magnetic tunnel junctions has been investigated from measurements of the tunneling magnetoresistance and via x-ray magnetic circular dichroism (XMCD). The magnetoresistance shows a high asymmetry with respect to bias voltage, giving rise to a negative value of up to -16% at 2.8 K. We attribute this effect to the formation of noncollinear spin structures at the interface of the NiO layer as inferred from XMCD measurements. The magnetic moments of the interface Ni atoms tilt from their easy axis due to exchange coupling with the neighboring ferromagnetic electrode, and the tilting angle decreases with increasing NiO thickness. The experimental observations are further supported by noncollinear spin density functional calculations.  相似文献   

20.
The effect of intermetallic nanoparticles like Ni3Al and nanoparticles of an Fe-rich bcc phase on the evolution of vacancy defects in an fcc Fe–34.2 wt% Ni–5.4 wt% Al model alloy under electron irradiation at elevated temperatures (423 and 573 K) was investigated using positron annihilation spectroscopy. Nanosized (1–8 nm) particles, which are homogeneously distributed in the alloy matrix, cause a several-fold decrease in the accumulation of vacancies as compared to their accumulation in a quenched alloy. This effect depends on the size and the type of nanoparticles. The effect of the nanoparticles increases when the irradiation temperature increases. The irradiation-induced nucleation and the growth of intermetallic nanoparticles were also observed in an alloy pre-aged at 1023 K under irradiation at 573 K. Thus, a quantum-dot-like positron state within ultrafine intermetallic particles, which we revealed earlier, allows control of the evolution of coherent precipitates like Ni3Al, along with vacancy defects, during irradiation and subsequent annealing. Possible mechanisms of the absorption of point defects by nanoparticles are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号