首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The European Physical Journal A - The first neutron star (NS) merger observed by advanced LIGO and Virgo, GW170817, and its fireworks of electromagnetic counterparts across the entire...  相似文献   

2.
Gravitational waves (GWs) are expected to play a crucial role in the development of multimessenger astrophysics. The combination of GW observations with other astrophysical triggers, such as from gamma-ray and X-ray satellites, optical/radio telescopes, and neutrino detectors allows us to decipher science that would otherwise be inaccessible. In this paper, we provide a broad review from the multimessenger perspective of the science reach offered by the third generation interferometric GW detectors and by the Einstein Telescope (ET) in particular. We focus on cosmic transients, and base our estimates on the results obtained by ET’s predecessors GEO, LIGO, and Virgo.  相似文献   

3.
Recently, the LIGO Scientific Collaboration and Virgo Collaboration published the second observation of a gravitational wave, GW151226 [Phys. Rev. Lett. 116, 241103(2016)], from a binary black hole coalescence with initial masses about 14 M and 8 M. They claimed that the peak gravitational strain was reached at about 450 Hz, the inverse of which is longer than the average time a photon stays in the Fabry-Perot cavities in the two arms.In this case, the phase-difference of a photon in the two arms due to the propagation of a gravitational wave does not always increase as the photon stays in the cavities. It might even be cancelled to zero in extreme cases. When the propagation effect is taken into account, we find that the claimed signal GW151226 almost disappears.  相似文献   

4.
Finding the electromagnetic(EM) counterpart of binary compact star merger, especially the binary neutron star(BNS) merger,is critically important for gravitational wave(GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017,Advanced LIGO and Fermi/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart,GRB 170817 A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope(HE) onboard Insight-HXMT(Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart(SSS17 a/AT2017 gfo) with very large collection area(~1000 cm~2) and microsecond time resolution in 0.2-5 MeV. In addition,Insight-HXMT quickly implemented a Target of Opportunity(ToO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although Insight-HXMT did not detect any significant high energy(0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817 A. Meanwhile,Insight-HXMT/HE provides one of the most stringent constraints(~10~(-7) to 10~(-6) erg/cm~2/s) for both GRB170817 A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of Insight-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.  相似文献   

5.
The observation of the inspiral and merger of compact binaries by the LIGO/Virgo collaboration ushered in a new era in the study of strong-field gravity. We review current and future tests of strong gravity and of the Kerr paradigm with gravitational-wave interferometers, both within a theory-agnostic framework (the parametrized post-Einsteinian formalism) and in the context of specific modified theories of gravity (scalar–tensor, Einstein–dilaton–Gauss–Bonnet, dynamical Chern–Simons, Lorentz-violating, and extra dimensional theories). In this contribution we focus on (i) the information carried by the inspiral radiation, and (ii) recent progress in numerical simulations of compact binary mergers in modified gravity.  相似文献   

6.
In recent years, machine learning models have been introduced into the field of gravitational wave (GW) data processing. In this paper, we apply the convolutional neural network (CNN) to LIGO O1, O2, O3a data analysis to search the released 41 GW events which are emitted from binary black hole (BBH) mergers (here we exclude the events from binary neutron star (BNS) mergers, and the events that are not detected simultaneously by Hanford (H) and Livingston (L) detectors), and use time sliding method to reduce the false alarm rate (FAR). According to the results, the 41 confirmed GW events of BBH mergers can be classified successfully by our CNN model. Furthermore, through restricting the number of consecutive prewarning from sequential samples intercepted continuously in LIGO O2 real time-series and vetoing the coincidences of noise from H and L, the FAR is limited to be less than once in 2 months. It is helpful to promote LIGO real time data processing.  相似文献   

7.
Many astronomical sources of intense bursts of photons are also predicted to be strong emitters of gravitational waves (GWs) and high-energy neutrinos (HENs). Moreover some suspected classes, e.g., choked gamma-ray bursts, may only be identifiable via nonphoton messengers. Here we explore the reach of current and planned experiments to address this question. We derive constraints on the rate of GW and HEN bursts based on independent observations by the initial LIGO and Virgo GW detectors and the partially completed IceCube (40-string) HEN detector. We then estimate the reach of joint GW+HEN searches using advanced GW detectors and the completed km(3) IceCube detector to probe the joint parameter space. We show that searches undertaken by advanced detectors will be capable of detecting, constraining, or excluding, several existing models with 1 yr of observation.  相似文献   

8.
《Comptes Rendus Physique》2019,20(6):507-520
After a short review of prominent properties of gravitational waves and of the newly born gravitational astronomy, we focus on theoretical aspects. Analytic approximation methods in general relativity have played a crucial role in the recent discoveries of gravitational waves. They are used to build theoretical template banks for searching and analyzing the signals in the ground-based detectors LIGO and Virgo, and, further ahead, space-based LISA-like detectors. In particular, the post-Newtonian approximation describes with high accuracy the early inspiral of compact binary systems, made of black holes or neutron stars. It mainly consists of extending the Einstein quadrupole formula by a series of relativistic corrections up to high order. The compact objects are modeled by point masses with spins. The practical calculations face difficult problems of divergences, which have been solved thanks to dimensional regularization. In the last rotations before the merger, the finite size effects and the internal structure of neutron stars (notably the internal equation of state) affect the evolution of the orbit and the emission of gravitational waves. We describe these effects within a simple Newtonian model.  相似文献   

9.
10.
The first gravitational wave (GW) – gamma-ray burst (GRB) association, GW170817/GRB 170817A, had an offset in time, with the GRB trigger time delayed by ~1.7 s with respect to the merger time of the GW signal. We generally discuss the astrophysical origin of the delay time, Δt, of GW-GRB associations within the context of compact binary coalescence (CBC) – short GRB (sGRB) associations and GW burst – long GRB (lGRB) associations. In general, the delay time should include three terms, the time to launch a clean (relativistic) jet, Δtjet; the time for the jet to break out from the surrounding medium, Δtbo; and the time for the jet to reach the energy dissipation and GRB emission site, ΔtGRB. For CBC-sGRB associations, Δtjet and Δtbo are correlated, and the final delay can be from 10 ms to a few seconds. For GWB-lGRB associations, Δtjet and Δtbo are independent. The latter is at least ~10 s, so that Δt of these associations is at least this long. For certain jet launching mechanisms of lGRBs, Δt can be minutes or even hours long due to the extended engine waiting time to launch a jet. We discuss the cases of GW170817/GRB 170817A and GW150914/GW150914-GBM within this theoretical framework and suggest that the delay times of future GW/GRB associations will shed light into the jet launching mechanisms of GRBs.  相似文献   

11.
伽玛射线暴(简称伽玛暴)是当今天体物理领域最热门的研究领域之一。继过去几年内长时标伽玛暴(持续时标长于2秒)研究取得的不断突破,2005年以来短时标伽玛暴(短于2秒)之谜也开始被解开,短暴的双中子星并合模型第一次得到观测支持。最近还发现一个红移高达6.3的伽玛暴,这标志着伽玛暴开始成为研究高红移宇宙学的探针。本文旨在对伽玛暴研究的历史和现状作一个回顾和评述,并就爱因斯坦所创立的相对论和宇宙学具体在伽玛暴研究中的应用作一些讨论。  相似文献   

12.
For the benefit of the readers of this journal, the editors requested that we prepare a brief review of the history of the development of the theory, the experimental attempts to detect them, and the recent direct observations of gravitational waves (GWs). The theoretical ideas and disputes beginning with Einstein in 1916 regarding the existence and nature of gravitational waves and the extent to which one can rely on the electromagnetic analogy, especially the controversies regarding the quadrupole formula and whether gravitational waves carry energy, are discussed. The theoretical conclusions eventually received strong observational support from the binary pulsar. This provided compelling, although indirect, evidence for gravitational waves carrying away energy—as predicted by the quadrupole formula. On the direct detection experimental side, Joseph Weber started more than fifty years ago. In 1966, his bar for GW detection reached a strain sensitivity of a few times 10?16. His announcement of coincident signals (now considered spurious), stimulated many experimental efforts from room temperature resonant masses to cryogenic detectors and laser-interferometers. Now there are km-sized interferometric detectors (LIGO Hanford, LIGO Livingston, Virgo and KAGRA). Advanced LIGO first reached a strain sensitivity of the order of 10?22. During their first 130 days of observation (O1 run), with the aid of templates generated by numerical relativity, they did make the first detections: two 5-σ GW events and one likely event. Besides earth-based GW detectors, the drag-free sensitivity of the LISA Pathfinder has already reached to the LISA goal level, paving the road for space GW detectors. Over the whole GW spectrum (from aHz to THz) there are efforts for detection, notably the very-low-frequency band (pulsar timing array [PTA], 300 pHz – 100 nHz) and the extremely-low (Hubble)-frequency (cosmic microwave background [CMB] experiment, 1 aHz – 10 fHz).  相似文献   

13.
We demonstrate by a large set of merger simulations for symmetric binary neutron stars (NSs) that there is a tight correlation between the frequency peak of the postmerger gravitational-wave (GW) emission and the physical properties of the nuclear equation of state (EoS), e.g., expressed by the radius of the maximum-mass Tolman-Oppenheimer-Volkhoff configuration. Therefore, a single measurement of the peak frequency of the postmerger GW signal will constrain the NS EoS significantly. For optimistic merger-rate estimates a corresponding detection with Advanced LIGO is expected to happen within an operation time of roughly a year.  相似文献   

14.
Neutron stars are known to show an accelerated spin-up of their rotational frequency on a short time scale of around 40 s, called a “glitch” in the neutron star. These neutron star glitches can emit short-duration transient gravitational wave signals as f-mode oscillations at frequencies between 1.5 and 3 kHz and damping times of less than a few seconds. The observed rate of neutron star glitches are currently limited by their electromagnetic observations. There could be a population of the isolated neutron stars in the galaxy for which there is no electromagnetic observation, but they can produce gravitational wave signals. Here, the sensitivity of the generic all-sky search for short-duration transients towards neutron star glitches during the Advanced LIGO and Virgo's third observing run using the Coherent WaveBurst algorithm is presented. The prospects of detecting signals from such glitching neutron stars for the upcoming fourth and fifth observing runs of Advanced LIGO and Virgo detectors are also described.  相似文献   

15.
We represent and discuss a theory of gravitational holography in which all the involved waves; subject, reference and illuminator are gravitational waves (GW). Although these waves are so weak that no terrestrial experimental set-ups, even the large LIGO, VIRGO, GEO and TAMA facilities, were able up to now to directly detect them they are, nevertheless, known under certain conditions (such as very small wavelengths) to be almost indistinguishable (see P. 962, in Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Freeman, San Francisco.) from their analogue electromagnetic waves (EMW). We, therefore theoretically, show, using the known methods of optical holography and taking into account the very peculiar nature of GW, that it is also possible to reconstruct subject gravitational waves. PACS numbers: 42.40.-i, 42.40.Eq, 04.30.-w, 04.30.Nk  相似文献   

16.
Long gamma-ray bursts (GRBs) could be emitted from rapidly spinning black-hole-torus systems, resulting from either hypernovae or black-hole-neutron-star coalescence. We show that a nonaxisymmetric torus may also radiate gravitational radiation, powered by the spin energy of the black hole. The coupling to the spin energy of the black hole operates by equivalence in poloidal topology to pulsar magnetospheres. Results calculated in the suspended-accretion state indicate that GRBs are potentially the most powerful LIGO/VIRGO burst sources in the Universe, with an expected duration of 10-15 s on a horizontal branch of 1-2 kHz in the f(f) diagram.  相似文献   

17.
The resonant excitation of neutron star (NS) modes by tides is investigated as a source of short gamma-ray burst (SGRB) precursors. We find that the driving of a crust-core interface mode can lead to shattering of the NS crust, liberating ~10{46}-10{47} erg of energy seconds before the merger of a NS-NS or NS-black-hole binary. Such properties are consistent with Swift/BAT detections of SGRB precursors, and we use the timing of the observed precursors to place weak constraints on the crust equation of state. We describe how a larger sample of precursor detections could be used alongside coincident gravitational wave detections of the inspiral by Advanced LIGO class detectors to probe the NS structure. These two types of observations nicely complement one another, since the former constrains the equation of state and structure near the crust-core boundary, while the latter is more sensitive to the core equation of state.  相似文献   

18.
Standard sirens have been the central paradigm in gravitational-wave cosmology so far. From the gravitational wave signature of compact star binaries, it is possible to measure the luminosity distance of the source directly, and if additional information on the source redshift is provided, a measurement of the cosmological expansion can be performed. This review article discusses several methodologies that have been proposed to use gravitational waves for cosmological studies. Methods that use only gravitational-wave signals and methods that use gravitational waves in conjunction with additional observations such as electromagnetic counterparts and galaxy catalogs will be discussed. The review also discusses the most recent results on gravitational-wave cosmology, starting from the binary neutron star merger GW170817 and its electromagnetic counterpart and finishing with the population of binary black holes, observed with the third Gravitational-wave Transient Catalog GWTC–3.  相似文献   

19.
Gamma-ray bursts (GRBs) are short and intense emission of soft γ-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy γ-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.  相似文献   

20.
Gamma-ray bursts (GRBs) are short and intense emission of soft γ-rays, which have fascinated astronomers and astrophysicists since their unexpected discovery in 1960s. The X-ray/optical/radio afterglow observations confirm the cosmological origin of GRBs, support the fireball model, and imply a long-activity of the central engine. The high-energy γ-ray emission (> 20 MeV) from GRBs is particularly important because they shed some lights on the radiation mechanisms and can help us to constrain the physical processes giving rise to the early afterglows. In this work, we review observational and theoretical studies of the high-energy emission from GRBs. Special attention is given to the expected high-energy emission signatures accompanying the canonical early-time X-ray afterglow that was observed by the Swift X-ray Telescope. We also discuss the detection prospect of the upcoming GLAST satellite and the current ground-based Cerenkov detectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号