首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The combustion of stoichiometric Ethyl-hexyl-nitrate (EHN)-doped n-heptane/oxygen/argon and (EHN)-doped n-heptane/air mixtures, respectively, was investigated in a low-pressure burner with a molecular-beam mass spectrometer and ignition delay-time (τign) measurements were performed in a high-pressure shock tube. The experiments with the low-pressure flame were used for the determination of the flame structure including concentration profiles of reactants, products and important intermediates in the flame. The shock tube experiments provided τign for a temperature range of 690 K ? T ? 1275 K at a pressure of 40 ± 2 bar for stoichiometric and lean mixtures under engine relevant conditions. A chemical mechanism for n-heptane/EHN mixtures was developed from an automatically generated mechanism for n-heptane by manually adding reactions to describe the influence of EHN. This mechanism was validated against the shock-tube data for various temperatures, levels of EHN-doping and equivalence ratios by homogeneous reactor calculations.The ignition delay times predicted by the model agree well with the shock tube results for a large range of temperatures, equivalence ratios and EHN concentrations. The influence of EHN onto ignition delay was largest in the low-temperature regime (770-1000 K).Numerical analysis suggests that the prevalent reason for the ignition-enhancing effect of EHN is the formation of highly reactive heptyl radicals by thermal decomposition of EHN. Due to this comparatively simple and generic mechanism, EHN is expected to have a similar ignition-enhancing effect also for other hydrocarbon fuels.  相似文献   

2.
Ignition-delay times were measured in shock-heated gases for a surrogate gasoline fuel comprised of ethanol/iso-octane/n-heptane/toluene at a composition of 40%/37.8%/10.2%/12% by liquid volume with a calculated octane number of 98.8. The experiments were carried out in stoichiometric mixtures in air behind reflected shock waves in a heated high-pressure shock tube. Initial reflected shock conditions were as follows: Temperatures of 690-1200 K, and pressures of 10, 30 and 50 bar, respectively. Ignition delay times were determined from CH chemiluminescence at 431.5 nm measured at a sidewall location. The experimental results are compared to simulated ignition delay times based on detailed chemical kinetic mechanisms. The main mechanism is based on the primary reference fuels (PRF) model, and sub-mechanisms were incorporated to account for the effect of ethanol and/or toluene. The simulations are also compared to experimental ignition-delay data from the literature for ethanol/iso-octane/n-heptane (20%/62%/18% by liquid volume) and iso-octane/n-heptane/toluene (69%/17%/14% by liquid volume) surrogate fuels. The relative behavior of the ignition delay times of the different surrogates was well predicted, but the simulations overestimate the ignition delay, mostly at low temperatures.  相似文献   

3.
Alkyl aromatics are an important chemical class in gasoline, jet and diesel fuels. In the present work, an n-propylbenzene and n-heptane mixture is studied as a possible surrogate for large alkyl benzenes contained in diesel fuels. To evaluate it as a surrogate, ignition delay times have been measured in a heated high pressure shock tube (HPST) for a mixture of 57% n-propylbenzene/43% n-heptane in air (≈21% O2, ≈79% N2) at equivalence ratios of 0.29, 0.49, 0.98 and 1.95 and compressed pressures of 1, 10 and 30 atm over a temperature range of 1000–1600 K. The effects of reflected-shock pressure and equivalence ratio on ignition delay time were determined and common trends highlighted. A combined n-propylbenzene and n-heptane reaction mechanism was assembled and simulations of the shock tube experiments were carried out. The simulation results showed very good agreement with the experimental data for ignition delay times. Sensitivity and reaction pathway analyses have been performed to reveal the important reactions responsible for fuel oxidation under the shock tube conditions studied. It was found that at 1000 K, the main consumption pathways for n-propylbenzene are abstraction reactions on the alkyl chain, with particular selectivity to the allylic site. In comparison at 1500 K, the unimolecular decomposition of the fuel is the main consumption pathway.  相似文献   

4.
Methyl radical concentration time-histories were measured during the oxidation and pyrolysis of iso-octane and n-heptane behind reflected shock waves. Initial reflected shock conditions covered temperatures of 1100-1560 K, pressures of 1.6-2.0 atm and initial fuel concentrations of 100-500 ppm. Methyl radicals were detected using cw UV laser absorption near 216 nm; three wavelengths were used to compensate for time- and wavelength-dependent interference absorption. Methyl time-histories were compared to the predictions of several current oxidation models. While some agreement was found between modeling and measurement in the early rise, peak and plateau values of methyl, and in the ignition time, none of the current mechanisms accurately recover all of these features. Sensitivity analysis of the ignition times for both iso-octane and n-heptane showed a strong dependence on the reaction C3H5 + H = C3H4 + H2, and a recommended rate was found for this reaction. Sensitivity analysis of the initial rate of CH3 production during pyrolysis indicated that for both iso-octane and n-heptane, reaction rates for the initial decomposition channels are well isolated, and overall values for these rates were obtained. The present concentration time-history data provide strong constraints on the reaction mechanisms of both iso-octane and n-heptane oxidation, and in conjunction with OH concentration time-histories and ignition delay times, recently measured in our laboratory, should provide a self-consistent set of kinetic targets for the validation and refinement of iso-octane and n-heptane reaction mechanisms.  相似文献   

5.
Ignition delay times and OH concentration time-histories were measured during n-dodecane oxidation behind reflected shocks waves using a heated, high-pressure shock tube. Measurements were made over temperatures of 727-1422 K, pressures of 15-34 atm, and equivalence ratios of 0.5 and 1.0. Ignition delay times were measured using side-wall pressure and OH emission diagnostics, and OH concentration time-histories were measured using narrow-linewidth ring-dye laser absorption near the R-branchhead of the OH A-X (0, 0) system at 306.47 nm. Shock tube measurements were compared to model predictions of four current n-dodecane oxidation detailed mechanisms, and the differences, particularly in the low-temperature negative-temperature-coefficient (NTC) region where the influence of non-ideal facility effects can be significant, are discussed. To our knowledge, the current measurements provide the first gas-phase shock tube ignition delay times (at pressures above 13 atm) and quantitative OH concentration time-histories for n-dodecane oxidation under practical engine conditions, and hence provide benchmark validation targets for refinement of jet fuel detailed kinetic modeling, since n-dodecane is widely used as the principal representative for n-alkanes in jet fuel surrogates.  相似文献   

6.
Phosphor thermometry and vibrational coherent anti-stokes Raman spectroscopy (CARS) were applied simultaneously to examine gas-solid interfaces in a generic combustor. For this purpose, an internally air-cooled obstacle was installed within an optically accessible, pressurized combustion chamber. During the operation of a turbulent, swirled n-heptane flame, the obstacle’s surface temperature and the surface-normal gas temperature distribution were measured. The surface temperature was determined by Thermographic Phosphors, materials whose phosphorescence decay times depend on their temperature. Following a pulsed UV laser excitation (355 nm), the 659 nm emission band of Mg4FGeO6:Mn was monitored by a photomultiplier tube.Non-invasive temperature measurements in the flue gas region of the n-heptane spray flame near the surface were performed pointwise by vibrational CARS of diatomic nitrogen. Beams from a frequency doubled Nd:YAG laser (532 nm) and a modeless broadband dye laser (607 nm) were phase-matched within a surface-parallel, planar BOXCARS configuration. This allowed gas phase thermometry as close as 30 μm to the surface.The thermal boundary layer and wall temperature measurements were consistent with each other. This demonstrates the potential of spectrocopic techniques to study gas-solid interfaces with high temporal and spatial resolution. Using the interior surface temperature within the cooling channel measured by a thermocouple, the heat flux through the wall and the local heat transfer coefficient at the front side of the obstacle were estimated.  相似文献   

7.
A two-wavelength mid-IR laser is used for time-resolved absorption-based measurements of temperature and n-heptane concentration in shock-heated gases. The novel difference-frequency-generation laser provides tunable mid-IR light from nonlinear conversion of near-IR light, enabling access to the strong hydrocarbon absorption bands between 3.3 and 3.5 μm associated with the CH stretching vibration. This laser was modified to alternate between two mid-IR wavelengths at 200 kHz, providing 5 μs time resolution for simultaneous monitoring of temperature and concentration in reactive flows and combustion systems. Temperature-dependent absorption spectra of n-heptane are first measured in a cell from 298 to 773 K using an FTIR spectrometer. These spectra are used to select candidate pairs of wavelengths with good sensitivity to temperature and concentration and to provide accurate temperature-dependent absorption cross-sections at the selected wavelengths. Laser absorption measurements of shock-heated n-heptane are then used to extend the cross-section data to 1300 K and to investigate the sensor accuracy and noise characteristics. The temperature and concentration inferred from the measurements are compared to known post-shock conditions, with a 4.5% RMS deviation from the calculated temperature and 1.7% RMS deviation from the calculated concentration. Finally, at high temperatures, the sensor is used to monitor decomposition of n-heptane, illustrating the potential of this diagnostic for hydrocarbon kinetics experiments in shock tubes. This new sensor concept should prove useful for simultaneous, time-resolved temperature and hydrocarbon concentration measurements in a variety of combustion and propulsion applications.  相似文献   

8.
Soot growth from inception to mass-loading is studied in a wide range of molecular weights (MW) from 105 to 1010u by means of size exclusion chromatography (SEC) coupled with on-line UV-visible spectroscopy. The evolution of MW distributions of soot is also numerically predicted by using a detailed kinetic model coupled with a discrete-sectional approach for the modeling of the gas-to-particle process. Two premixed flames burning n-heptane in slightly sooting and heavily sooting conditions are studied. The effect of aromatic addition to the fuel is studied by adding n-propylbenzene (10% by volume) to n-heptane in the heavily sooting condition. A progressive reduction of the MW distribution from multimodal to unimodal is observed along the flames testifying the occurrence of particle growth and agglomeration. These processes occur earlier in the aromatic-doped n-heptane flame due to the overriding role of benzene on soot formation which results in bigger young soot particles. Modeled MW distributions are in reasonable agreement with experimental data although the model predicts a slower coagulation process particularly in the slightly sooting n-heptane flame. Given the good agreement between model predictions and experiments, the model is used to explore the role of fuel chemistry on MW distributions. Two flames of n-heptane and n-heptane/n-propylbenzene in heavily sooting conditions with the same temperature profile and inert dilution are modeled. The formation of larger soot particles is still evident in the n-heptane/n-propylbenzene flame with respect to the n-heptane flame in the same operating conditions of temperature and dilution. In addition the model predicts a larger formation of molecular particles in the flame containing n-propylbenzene and shows that soot inception occurs in correspondence of their maximum formation thus indicating the importance of molecular growth in soot inception.  相似文献   

9.
In this work, oblique detonation of n-heptane/air mixture in high-speed wedge flows is simulated by solving the reactive Euler equations with a two-dimensional (2D) configuration. This is a first attempt to model complicated hydrocarbon fuel oblique detonation waves (ODWs) with a detailed chemistry (44 species and 112 reactions). Effects of freestream equivalence ratios and velocities are considered, and the abrupt and smooth transition from oblique shock to detonation are predicted. Ignition limit, ODW characteristics, and predictability of the transition mode are discussed. Firstly, homogeneous constant-volume ignition calculations are performed for both fuel-lean and stoichiometric mixtures. The results show that the ignition delay generally increases with the wedge angle. However, a negative wedge angle dependence is observed, due to the negative temperature coefficient effects. The wedge angle range for successful ignition of n-heptane/air mixtures decreases when the wedge length is reduced. From two-dimensional simulations of stationary ODWs, the initiation length generally decreases with the freestream equivalence ratio, but the transition length exhibits weakly non-monotonic dependence. Smooth ODW typically occurs for lean conditions (equivalence ratio < 0.4). The interactions between shock/compression waves and chemical reaction inside the induction zone are also studied with the chemical explosive mode analysis. Moreover, the predictability of the shock-to-detonation transition mode is explored through quantifying the relation between ignition delay and chemical excitation time. It is demonstrated that the ignition delay (the elapsed time of the heat release rate, HRR, reaches the maximum) increases, but the excitation time (the time duration from the instant of 5% maximum HRR to that of the maximum) decreases with the freestream equivalence ratio for the three studied oncoming flow velocities. Smaller excitation time corresponds to stronger pressure waves from the ignition location behind the oblique shock. When the ratio of excitation time to ignition delay is high (e.g., > 0.5 for n-C7H16, > 0.3 for C2H2 and > 0.2 for H2, based on the existing data compilation in this work), smooth transition is more likely to occur.  相似文献   

10.
Ethanol is known to be prone to pre-ignition in internal combustion engines under high-load conditions and its ignition shows large deviations from ideal, spatially, and temporally-homogeneous ignition in shock tubes at moderate temperatures (800–950 K). In this context, the ignition of stoichiometric ethanol/O2 mixtures with various levels of inert gas dilution was investigated in a high-pressure shock tube at ?20 bar between 800 and 1250 K. Ignition delay times were determined from spatially integral detection of chemiluminescence emission. Additionally, high-repetition-rate color imaging enabled the differentiation of the luminescence in time, space, and spectral range between various ignition modes. In the low-temperature range (800–860 K), different inhomogeneous ignition modes were identified. The addition of small amounts of helium into the undiluted fuel/air mixture was found to be efficient to mitigate pre-ignition, attributed to a variation in heat transfer and thus suppression of the build-up of local temperature inhomogeneities. The experiments in case of spatially homogeneous ignition show very good agreement with the predictions based on three detailed kinetics mechanisms (Zhang et al., CNF 190 (2018) 74, Frassoldati et al., CNF 159 (2012) 2295, and Zhou et al. CNF 197 (2018) 423), inhomogeneities, however, resulted in a shortening of the ignition delay times up to a factor of 2.6.  相似文献   

11.
The results of detailed kinetic simulations of the formation of soot particles in the pyrolysis of n-hexane–argon mixtures and in the oxidation of fuel-rich (φ = 5) n-heptane–oxygen–argon mixtures behind reflected shock waves at pressures of 20–100 bar and a constant concentration of carbon atoms or a constant fraction of argon in the initial mixture within the framework of a modified reaction mechanism are reported. The choice of n-hexane and n-heptane for examining the effect of pressure on the process of soot formation was motivated by the availability for these hydrocarbons of experimental measurements in reflected shock waves at high pressures (up to ~100 bar). The temperature dependences of the yield of soot particles formed in the pyrolysis of n-hexane are found to be very weakly dependent on pressure and slightly shifting to lower temperatures with increasing pressure. In general, pressure produces a very weak effect on the soot formation in the pyrolysis of n-hexane. The effect of pressure and concentration of carbon atoms in the initial mixture on the process of soot formation during the oxidation of fuel-rich n-heptane mixtures behind reflected shock waves is studied. The results of our kinetic simulations show that, for both the pyrolysis of n-hexane and the oxidation of fuel-rich n-heptane–oxygen mixtures, the influence of pressure on the process of soot formation is negligible. By contrast, the concentration of carbon atoms in the initial reaction mixture produces a much more pronounced effect.  相似文献   

12.
A wavelength-tunable mid-infrared (mid-IR) laser is used to make time-resolved absorption measurements of methyl-cyclohexane (MCH) and n-dodecane vapor concentration, demonstrating the use of this novel laser source for sensing hydrocarbon fuels. Two sensitive and species-specific diagnostic strategies are investigated: (1) direct absorption at a fixed wavelength, and (2) dual-wavelength differential absorption with two rapidly-alternating wavelengths. The tunable laser light is produced using difference frequency generation by combining two near-infrared diode lasers in a periodically poled lithium niobate crystal, providing a continuous-wave (cw), room temperature mid-IR source with the low intensity noise, and rapid wavelength tunability typical of telecommunications diode lasers. Direct absorption measurements of MCH with a wavelength of 3413.7 nm demonstrate fast time response (1 μs) and low noise in cell (300-675 K) and shock tube (650-1450 K) experiments. The detection limits of MCH range from 0.5 ppm-m at 300 K to 11 ppm-m at 1440 K (pressure = 101 kPa). Next, time-division multiplexing is used to alternately generate two mid-IR wavelengths at 20 kHz, enabling the use of dual-wavelength differential absorption to eliminate interference absorption. Measurements of MCH concentration are first made in a cell, with varying amounts of n-heptane interference absorption. Accurate values of MCH concentration are obtained for n-heptane/MCH ratios as high as 15, demonstrating the utility of this sensor for species-specific hydrocarbon detection in systems with interfering absorption. Finally, time-resolved n-dodecane vapor concentration measurements are made in a shock-heated evaporating aerosol. The dual-wavelength differential absorption diagnostic is sensitive only to the vapor concentration, rejecting droplet extinction. These measurements illustrate the power of the differential absorption strategy for sensitive vapor-phase detection in the presence of particle scattering. The tunability of this new source will allow these concepts to be extended to other hydrocarbon fuels.  相似文献   

13.
A study of detonation velocity and cellular structure for stoichiometric heptane/oxygen and for some stoichiometric heptane/oxygen/argon mixtures is carried out in a shock tube at low initial pressure. The critical conditions for the detonation onset and for the propagation of a self-sustained detonation wave are determined. A simplified form of the ZND model used in conjunction with a validated detailed kinetic model leads to the determination of the proportionality factor, A, between the detonation cell width, λ, and the induction distance, Δ, in the detonation wave. This A factor is of practical importance to estimate the detonation properties of n-heptane based mixtures including n-heptane/air. The prediction of detonation cell size λ for n-heptane based mixtures is discussed according to the recent semi-empirical detonation model of Gavrikov et al. The cell sizes predicted according to this detonation model are underestimated by a factor of about 8. The limitations of this model are underlined when applied to n-heptane based mixtures.  相似文献   

14.
n-Heptane has been used extensively in various fundamental combustion experiments as a prototypical hydrocarbon fuel. While the formation of polycyclic aromatic hydrocarbon (PAH) in n-heptane combustion has been studied preferably in premixed flames, this study aims to investigate the combustion chemistry of n-heptane in less-studied diffusion flame and highly rich high-temperature homogeneous oxidation configurations by using a counterflow burner and a flow reactor, respectively. This work addresses the formation of higher-molecular species in the mass range up to about 160 u in both configurations. Samples are analyzed by time-of-flight (TOF) molecular beam mass spectrometry (MBMS) using electron-impact (EI) and single-photon ionization (PI). Highly resolved speciation data are reported. Laminar flow reactor experiments cover a wide temperature range. Especially the measurements at low temperatures provide speciation data of large oxygenates produced in the low-temperature oxidation of n-heptane, which are scarce in the literature. Important precursor molecules for PAH and soot formation, such as C9H8, C10H8, C11H10, and C12H8, are formed during the high-temperature combustion process in the counterflow flame, while oxygenated growth species are observed under low-temperature conditions, even at the fuel-rich equivalence ratio of ?=4.00.Numerical modeling for both conditions is performed by using a newly developed kinetic model of n-heptane, which includes the n-heptane and PAH formation chemistry with state-of-the-art kinetic knowledge. Good agreement between model predictions and experimental data of counterflow flame and flow reactor is observed for the major species and some intermediates of n-heptane oxidation. While the concentrations of benzene and toluene measured in the counterflow burner are well-reproduced, the numerical results for flow reactor data are not satisfactory. Differences are found between the formation pathways of fulvene, from whose isomerization benzene is produced in diffusion flame and flow reactor.  相似文献   

15.
The ignition behavior of n-dodecane micro-pilot spray in a lean-premixed methane/air charge was investigated in an optically accessible Rapid Compression-Expansion Machine at dual-fuel engine-like pressure/temperature conditions. The pilot fuel was admitted using a coaxial single-hole 100?µm injector mounted on the cylinder periphery. Optical diagnostics include combined high-speed CH2O-PLIF (10?kHz) and Schlieren (80?kHz) imaging for detection of the first-stage ignition, and simultaneous high-speed OH* chemiluminescence (40?kHz) imaging for high-temperature ignition. The aim of this study is to enhance the fundamental understanding of the interaction of methane with the auto-ignition process of short pilot-fuel injections. Addition of methane into the air charge considerably prolongs ignition delay of the pilot spray with an increasing effect at lower temperatures and with higher methane/air equivalence ratios. The temporal separation of the first CH2O detection and high-temperature ignition was found almost constant regardless of methane content. This was interpreted as methane mostly deferring the cool-flame reactivity. In order to understand the underlying mechanisms of this interaction, experimental investigations were complemented with 1D-flamelet simulations using detailed chemistry, confirming the chemical influence of methane deferring the reactivity in the pilot-fuel lean mixtures. This shifts the onset of first-stage reactivity towards the fuel-richer conditions. Consequently, the onset of the turbulent cool-flame is delayed, leading to an overall increased high-temperature ignition delay. Overall, the study reveals a complex interplay between entrainment, low T and high T chemistry and micro-mixing for dual-fuel auto-ignition processes for which the governing processes were identified.  相似文献   

16.
A detailed chemical kinetic model for the mixtures of primary reference fuel (PRF: n-heptane and iso-octane) and toluene has been proposed. This model is divided into three parts; a PRF mechanism [T. Ogura, Y. Sakai, A. Miyoshi, M. Koshi, P. Dagaut, Energy Fuels 21 (2007) 3233-3239], toluene sub-mechanism and cross reactions between PRF and toluene. Toluene sub-mechanism includes the low temperature kinetics relevant to engine conditions. A chemical kinetic mechanism proposed by Pitz et al. [W.J. Pitz, R. Seiser, J.W. Bozzelli, et al., in: Chemical Kinetic Characterization of the Combustion of Toluene, Proceedings of the Second Joint Meeting of the U.S. Sections of the Combustion Institute, 2001] was used as a starting model and modified by updating rate coefficients. Theoretical estimations of rate coefficients were performed for toluene and benzyl radical reactions important at low temperatures. Cross reactions between alkane, alkene, and aromatics were also included in order to account for the acceleration by the addition of toluene into iso-octane recently found in the shock tube study of the ignition delay [Y. Sakai, H. Ozawa, T. Ogura, A. Miyoshi, M. Koshi, W.J. Pitz, Effects of Toluene Addition to Primary Reference Fuel at High Temperature, SAE 2007-01-4104, 2007]. Validations of the model were performed with existing shock tube and flow tube data. The model well predicts the ignition characteristics of PRF/toluene mixtures under the wide range of temperatures (500-1700 K) and pressures (2-50 atm). It is found that reactions of benzyl radical with oxygen molecule determine the reactivity of toluene at low temperature. Although the effect of toluene addition to iso-octane is not fully resolved, the reactions of alkene with benzyl radical have the possibility to account for the kinetic interactions between PRF and toluene.  相似文献   

17.
Boundary layers are omnipresent in fundamental kinetic experimental facilities and practical combustion engines, which can cause ambiguity and misleading results in kinetic target acquisition and even abnormal engine combustion. In this paper, using n-heptane as a representative large hydrocarbon fuel exhibiting pronounced low-temperature chemistry (LTC), two-dimensional numerical simulation is conducted to resolve the transient autoignition phenomena affected by a boundary layer. We focus on the ignition characteristics and the subsequent combustion mode evolution of a hot combustible mixture flowing over a colder flat plate in an isobaric environment. For cases with autoignition occurring within the boundary layer, similarity is observed in the first-stage ignition as manifested by a constant temperature at all locations. The first-stage ignition is found to be rarely affected by heat and radical loss within the boundary layer. While for the main ignition event, an obvious dependence of ignition process on boundary layer thickness is identified, where the thermal-chemical process exhibits similarity at locations with similar boundary layer thickness, and the main ignition tends to first occur within the boundary layer at the domain end and generates a C-shape reaction front. It is found that sequential spontaneous autoignition is the dominant subsequent combustion mode at high-pressure conditions. At low to intermediate pressures, auto-ignition assisted flame propagation is nevertheless the dominant mode for combustion evolution. This research identifies novel features of autoignition and the subsequent combustion mode evolution affected by a cold, fully developed boundary layer, and provides useful guidance to the interpretation of abnormal combustion and combustion mode evolution in boundary layer flows.  相似文献   

18.
The oxidation of several mixtures of surrogate for gasoline was studied using a jet stirred reactor and a shock tube. One representative of each classes constituting gasoline was selected: iso-octane, toluene, 1-hexene and ethyl tert-butyl ether (ETBE). The experiments were carried out in the 800-1880 K temperature range, for two different initial pressures (0.2 and 1 MPa), with an initial fuel molar fraction of 0.001. The equivalence ratio varied from 0.5 to 1.5. Each hydrocarbon sub-mechanism was validated using shock tube data. The full mechanism describing the surrogate fuel oxidation is constituted of the sub-mechanisms for each fuel components and by adding interaction reactions between different hydrocarbon fragments. Good agreement between the experimental results and the computations was observed under JSR and shock tube conditions.  相似文献   

19.
Hydrogen atom abstraction by methyl peroxy (CH3OȮ) radicals can play an important role in gasoline/ethanol interacting chemistry for fuels that produce high concentrations of methyl radicals. Detailed kinetic reactions for hydrogen atom abstraction by CH3OȮ radicals from the components of FGF-LLNL (a gasoline surrogate) including cyclopentane, toluene, 1-hexene, n-heptane, and isooctane have been systematically studied in this work. The M06–2X/6–311++G(d,p) level of theory was used to obtain the optimized structure and vibrational frequency for all stationary points and the low-frequency torsional modes. The 1-D hindered rotor treatment for low-frequency torsional modes was treated at M06–2X/6–31G level of theory. The UCCSD(T)-F12a/cc-pVDZ-F12 and QCISD(T)/CBS level of theory were used to calculate single point energies for all species. High pressure limiting rate constants for all hydrogen atom abstraction channels were performed using conventional transition state theory with unsymmetric tunneling corrections. Individual rate constants are reported in the temperature range from 298.15 to 2000 K. Our computed results show that the abstraction of allylic hydrogen atoms from 1-hexene is the fastest at low temperatures. When the temperature increases, the hydrogen atom abstraction reaction channel at the primary alkyl site gradually becomes dominant. Thermodynamics properties for all stable species and high-pressure limiting rate constants for each reaction pathway obtained in this work were incorporated into the latest gasoline surrogate/ethanol model to investigate the influence of the rate constants calculated here on model predicted ignition delay times.  相似文献   

20.
Species concentration time-histories were measured during oxidation for the large, normal-alkane, diesel-surrogate component n-hexadecane. Measurements were performed behind reflected shock waves in an aerosol shock tube, which allowed for high fuel loading without pre-test heating and possible decomposition and oxidation. Experiments were conducted using near-stoichiometric mixtures of n-hexadecane and 4% oxygen in argon at temperatures of 1165–1352 K and pressures near 2 atm. Concentration time-histories were recorded for five species: C2H4, CH4, OH, CO2, and H2O. Methane was monitored using DFG laser absorption near 3.4 μm; OH was monitored using UV laser absorption at 306.5 nm; C2H4 was monitored using a CO2 gas laser at 10.5 μm; and CO2 and H2O were monitored using tunable DFB diode laser absorption at 2.7 and 2.5 μm, respectively. These time-histories provide critically needed kinetic targets to test and refine large reaction mechanisms. Comparisons were made with the predictions of two diesel-surrogate reaction mechanisms (Westbrook et al. [1]; Ranzi et al. [9]) that include n-hexadecane, and areas of needed improvement in the mechanisms were identified. Comparisons of the intermediate product yields of ethylene for n-hexadecane with those found for other smaller n-alkanes, show that an n-hexadecane mechanism derived from a simple hierarchical extrapolation from a smaller n-alkane mechanism does not properly simulate the experimental measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号