首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
AC losses in Bi-2223 superconducting tapes carrying AC transport current and/or exposed to DC or AC magnetic field are calculated with a numerical model based on the finite element method. Superconducting property is given by the EJ characteristic represented by a power law using equivalent conductivity. First, transport loss and magnetization loss are calculated numerically and compared with measured values. The calculated losses almost agree with the measured losses. Frequency dependencies of calculated and measured transport losses are compared with each other. Next, the influence of DC external magnetic field on the transport loss is studied. DC external magnetic field reduces n that is an exponent in the power law connecting resistivity and current density. The numerically calculated transport loss increases with increasing DC magnetic field. Finally, the total loss of superconducting tape carrying AC transport current in AC magnetic field is calculated. In the perpendicular magnetic field, the calculated total loss is lager than the sum of the transport loss and the magnetization loss, while they almost agree with each other in the parallel magnetic field.  相似文献   

2.
We measured cyclic losses in a superconducting wire, carrying alternating transport current, simultaneously exposed to an alternating transverse magnetic field. Samples of Bi-2223 Ag-sheathed tapes have configuration of a double-layer non-inductive coil, which itself is a pickup coil to measure the AC losses. Potential taps were attached to both terminals of the sample coil. The external field was applied along the axis of the sample coil. In this procedure, we can estimate an averaged Poynting's vector on a cylindrical surface between the two layers by means of signals from a pair of the potential taps and from pickup coils for the external magnetic field and the transport current. We can also measure a magnetization and an extended transport-current components of AC losses in addition to a total cyclic loss for a combined alternating external field and transport current. Obtained results are compared with numerical predictions of the critical state model taking into account the magnetic field dependence of critical current density.  相似文献   

3.
The current density distribution of high temperature superconducting (HTS) tapes is modeled for the combined case of an alternating self and applied magnetic field. This numerical analysis is based on the two-dimensional Poisson equation for the vector potential. A one-dimensional current (z-direction) and a one-dimensional applied field (y-direction) are assumed. The vector potential is rewritten into an equation of motion for the current density J(x,y,t). The model covers the finite thickness of the conductor and an n-power E–J relation. The magnetic field dependence of Jc is also included in this E–J relation. A time-dependent two-dimensional current distribution that is influenced by the aspect ratio of the conductor and the material properties in E=f(J,B) is calculated numerically. The numerical results are compared with the experimental results for the AC loss of a tape driven by a transport current. Finally, a total AC loss factor is given for two cases in magnetic field direction, perpendicular and parallel to the conductor broad side.  相似文献   

4.
Some results of AC loss measurements are presented for 19, 61, 127-filamentary Bi-2223/Ag tapes prepared by the ‘powder-in-tube' method. All measurements have been made at T=77 K under sinusoidal transport current with frequency in the range of 30–600 Hz and the current amplitude up to 30 A. The measurements have been carried out both in self field conditions and at the external magnetic field applied to the tape at the different angles. The dependencies of the AC losses on current amplitude and frequency have been obtained. It is found that for all tapes the current amplitude dependencies of the AC losses show good agreement with the Norris prediction for an elliptical or strip geometry. The AC loss dependencies on frequency were linear. The measurements of AC losses in external magnetic field show that the change of AC losses is only through the change of the critical current. So the transport AC losses in the tapes are the ‘saturation losses' that is they are different from classic hysteresis losses.  相似文献   

5.
BSCCO/Ag tape superconductors are developed for electrical power applications at liquid nitrogen temperatures. In these applications, e.g., superconducting transformers and power cables, an AC transport current and an AC magnetic field are present at the same time. A set-up to measure the influence of external AC magnetic field on the transport current loss, i.e., the voltage drop across a sample supplied with an AC transport current, has been developed. The magnetic field can be applied both parallel and perpendicular to the broad side of the tape conductor. An increase of the transport current loss due to the external AC magnetic field is observed. When a DC external magnetic field is applied the increase of the self-field loss can be described well by the decrease of the critical current due to the magnetic field. In the case of an AC external magnetic field this is only a minor effect. For magnetic field amplitudes higher than a certain threshold value the transport current loss is described reasonably well by the self-field loss and a dynamic resistance contribution calculated from the DC voltage–current relation in AC magnetic field.  相似文献   

6.
We measured the AC transport current loss of Bi 2223 multifilament Ag-sheathed tape under DC external magnetic field of 0–0.2 T. There were discrepancies between the measured data and Norris' formula for elliptical model in the range of low value of Ip/Ic (Ip and Ic are peak of the AC transport current and critical current of the tape respectively), while without DC background field, the loss of the tape was close to Norris' formula. Theoretically speaking, even with the DC background field and decreased critical current the AC transport current loss of the tape follows Norris' formula which is derived from the Bean model. When DC background field is applied to the HTS tape, n value of the power law EJ characteristics decreases together with the decrease of Jc. Dependence of the AC transport current loss on the n value was analyzed by numerical calculation. The results show that the loss depends on the n value and that decrease of the n value is one of the causes of the discrepancies between the measured data and Norris' formula.  相似文献   

7.
皮伟  王银顺  左晶 《低温与超导》2011,39(1):25-28,50
通过数值模拟方法研究了超导薄圆筒在交变磁场下的交流损耗特性.这种超导体的几何模型为一个通有与外加磁场同相位的交流电且厚度可忽略的圆筒.基于Bean临界态模型,通过数值方法得到了交流损耗Q,与实验结果符合得很好.此值模拟方法仅适用于超导薄圆筒,对涂层超导体具有一定的应用价值.  相似文献   

8.
In a typical superconducting coil made of BSCCO/Ag tape, both amplitude and direction of the magnetic field determine the critical current, resistive voltage and AC loss. The distribution of the magnetic field along and across the superconducting tape in a coil is rather complex. This gives rise to the question: how accurate can one predict the critical current, VI characteristic and AC loss of the AC coil from results of short sample measurements? To answer this question, we have measured and compared the characteristics of a short sample and a small coil employing 14 m of the same tape at 77 K. The comparison is performed as follows. First, a short sample is characterised with regard to the field dependence of the critical current, VI characteristic and the AC loss. Second, the distribution of the magnetic field along the tape in a coil is accurately calculated. From the data, the voltage along the tape and the loss of the tape in the coil are found. Finally, the resistive voltage and the AC loss of the complete coil are calculated and compared to measured AC losses in the frequency range of 0 to 160 Hz, typical for power applications.  相似文献   

9.
We study experimentally and theoretically the AC transport current loss characteristics of a tape in multiple tapes assembled in single layer and subject to external field produced by transport currents of adjacent tapes. We measured the AC transport current losses of a Bi2223 silver-sheathed tape in a single layer arrangement of three tapes using our newly developed potential leads arrangement to avoid spurious loss components caused by the magnetization in the adjacent tapes. In the paper, the influence of the external AC field produced by adjacent tapes on the loss characteristics is studied based on the experimental results and theoretical analysis.  相似文献   

10.
在高温超导的电力应用中,如超导电机、变压器等,多数情况下,高温超导带材在通以交流传输电流的同时还处于交变磁场中。此时,超导体的交流损耗不仅依赖于磁场的大小,还与磁场相对于超导带面的取向有关。本文在77K及工频50Hz情况下,实验研究了单根多芯Bi2223/Ag高温超导带及两带并联时的交流损耗随着外磁场与带面夹角的变化情况;以及交流磁场对临界电流的影响情况;并对单根带及两带并联的实验结果进行了比较与分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号