首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
本文针对煤粉燃烧SCT模型中的氧气可达比表面积,进行了不同煤种的TG实验和N2/BET比表面积的测试,研究了煤粉燃烧过程中不同温度下比表面积在不同孔径下与燃尽度和燃烧速率的相关性,研究表明:煤粉在燃烧过程中的平均孔径大于3~11 nm时,该孔径以上的累积比表面积与燃尽度有很好的相关性;高阶煤的氧气可达比表面积在反应过程中逐渐增加,而低阶煤的氧气可达比表面积在反应过程中的变化不是很显著;通过大量的实验说明,不是所有的比表面积在反应过程中都发挥作用,而氧气可达比表面积可以很好地反映燃烧速率的变化.  相似文献   

2.
针对煤粉燃烧SCT模型中的氧气可达比表面积,进行了不同煤种的加压热重分析(PTGA)和不同燃尽度下煤焦N2/BET比表面积的测试,研究表明:煤粉加压燃烧过程中,当平均孔径大于2 nm时,累积比表面积和氧气可达比表面积均随燃尽度的增加而增加,说明该孔径以上的比表面积与燃尽度有很好的相关性;常压下TGA中不同燃尽度下煤焦氧气可达比表面积是PTGA下的1.5~2倍,这部分说明了加压反应速率不可能与压力等倍数增加.  相似文献   

3.
本文以含内在矿物煤粉为研究对象,在滴管炉上制焦后进行热重试验,用几种常用动力学模型进行数据处理。结果发现,用经典模型处理含内在矿物煤焦的热重数据线性不好,收缩核模型和随机核化模型也不能成立;用随机孔模型处理这些热重数据只在反应初期吻合较好,中后期偏差较大;而不同氧气浓度下所有煤焦的结构因子曲线都吻合得很好,这说明不假定任何模型的结构因子法能较好地反映含内在矿物煤焦燃烧动力学过程。  相似文献   

4.
为了较准确地预报炉内煤粉燃烧速率,正确区分TGA中滞止煤粉表面与炉内载流煤粉表面氧气浓度的变化规律是非常关键的。从TGA中非稳态条件下坩埚内颗粒表面氧气浓度分布的数理解知,煤样的氧化过程是同时进行的,只是上部的氧化速率大一些,底部的氧化速率小一些;同一样品,同一升温速率,试样的堆积厚度的差异,会影响实验结果的重复性。分析表明,在初始和反应结束时,坩埚内颗粒表面氧气浓度等于环境浓度;反应速率达到最大值时,颗粒表面氧气浓度达到最小值。颗粒在炉内流动燃烧过程中,环境中氧气浓度值是单调减少的,煤焦表面氧的浓度是非线性变化的。  相似文献   

5.
通过FESEM和EBSP对煤粉在TGA、DTF和电站锅炉内燃烧过程中的亚观和微观形态及碳的含量变化的研究表明:炭的形态可分为5类:薄壁网架炭、厚壁网架炭、浅孔实体炭、实体炭和含碳矿物;同一煤样同一温度条件下炉内炭比TGA和DTF中的炭具有更大的反应比表面积;炉内炭的表面含碳量变化不大,不存在低温反应器的表面灰壳,因此,应用球形灰壳理论预报炉内煤粉的燃烧速率是值得怀疑的;亚观形态与微观形态间不存在几何分形上的自相似性.  相似文献   

6.
目前,已建立的绝大多数炉内三维数值模拟都以颗粒轨道模型为基础。颗粒相连续介质模型已成功地应用于模拟气固两相射流及煤粉燃烧室内的三维气固两相流动。本文将它应用于四角喷燃炉膛内流动的模拟,作为炉内粉煤燃烧全过程数值模拟的第一步。  相似文献   

7.
循环流化床炉内石灰石脱硫对NOx排放产生影响,包括对挥发分氮氧化的催化作用以及对CO-NO还原的催化作用。利用固定床反应器对不同条件下CaO颗粒表面NO+CO的催化反应特性进行了探究。实验表明,无氧条件下,CaO能够显著催化CO还原NO,NO转化率与反应温度和CO浓度正相关,与NO浓度负相关.基于Langmuir-Hinshelwood机理建立了CaO催化NO+CO反应动力学模型,模型考虑了颗粒内、外扩散的影响.该模型适用于氧气浓度很低、CO浓度较高条件下。而在有氧气氛中,该反应受到明显抑制,且O2浓度越高,抑制作用越明显;当CaO周围氧气浓度远大于CO时,可忽略CaO对NO的催化还原作用。  相似文献   

8.
高温空气燃烧NOx排放特性的试验研究   总被引:2,自引:0,他引:2  
通过两种结构烧嘴的热态燃烧试验对比,研究了烧嘴结构、燃气射流速度、过量空气系数对高温空气燃烧过程氮氧化物排放的影响特性。研究结果认为:在燃气喷口两侧布置两个矩形空气喷口的烧嘴,氮氧化物排放量低于圆形空气喷口烧嘴;随着燃气射流速度的提高,高温空气燃烧过程排放的氮氧化物逐渐减少。与普通燃烧过程不同的是,随着过量空气系数的提高,在一定范围内高温空气燃烧的氮氧化物排放量不断增加。分析认为,高温空气燃烧氮氧化物排放量与火焰体积、炉内氧气与燃气混合过程以及燃气射流和空气射流对炉内烟气的卷吸量有关。  相似文献   

9.
根据不同温度下氧分子平均自由程的大小,比较了小孔、中孔和大孔中三种扩散速率与煤焦表面燃烧速度的大小.研究表明2000 K以内,颗粒表面分子扩散速率比氧化反应速率大1个数量级以上,过度扩散速率不小于氧化速率.温度小于1200K时,燃烧速率比Knudsen扩散速率小1~5个数量级,扩散孔径小于15~28 nm,反应主要在内外表面进行;1200~1600K时,燃烧速率与Knudsen扩散速率相当,扩散临界孔径28~38 nm,反应在外表面及浅层内表面进行;温度1600K以上时,Knudsen扩散速率比燃烧速率小1个数量级,孔径38~50 nm以下内表面上碳的氧化速度受扩散控制.煤焦的氧化主要发生在Knudsen扩散临界孔径10~50 nm以上的氧气可达表面上.  相似文献   

10.
煤的热天平燃烧反应动力学特性的研究   总被引:4,自引:0,他引:4  
采用热天平获得同一种煤在不同升温速率下的TG、DTG曲线,可求出燃烧速率、燃烧温度随燃烬度的变化曲线,根据两个不同升温速率下的数据,可计算出化学动力学参数活化能和指前因子随燃烬度的变化曲线。根据实验数据计算得到四个煤种的反应动力学参数随燃烬度变化的曲线,并预测其中一种煤在第三个升温速率下的燃烧速率随燃烬度的变化曲线,计算结果与实验结果符合较好。用此模型预测了在不同的恒定温度下试验煤种的煤粉燃烧速率随燃烬度的变化趋势。  相似文献   

11.
Apparent char kinetic rates are commonly used to predict pulverized coal char burning rates. These kinetic rates quantify the char burning rate based on the temperature of the particle and the oxygen concentration at the external particle surface, inherently neglecting the impact of variations in the internal diffusion rate and penetration of oxygen. To investigate the impact of bulk gas diffusivity on these phenomena during Zone II burning conditions, experimental measurements were performed of char particle combustion temperature and burnout for a subbituminous coal burning in an optical entrained flow reactor with helium and nitrogen diluents. The combination of much higher thermal conductivity and mass diffusivity in the helium environments resulted in cooler char combustion temperatures than in equivalent N2 environments. Measured char burnout was similar in the two environments for a given bulk oxygen concentration but was approximately 60% higher in helium environments for a given char combustion temperature. To augment the experimental measurements, detailed particle simulations of the experimental conditions were conducted with the SKIPPY code. These simulations also showed a 60% higher burning rate in the helium environments for a given char particle combustion temperature. To differentiate the effect of enhanced diffusion through the external boundary layer from the effect of enhanced diffusion through the particle, additional SKIPPY simulations were conducted under selected conditions in N2 and He environments for which the temperature and concentrations of reactants (oxygen and steam) were identical on the external char surface. Under these conditions, which yield matching apparent char burning rates, the computed char burning rate for He was 50% larger, demonstrating the potential for significant errors with the apparent kinetics approach. However, for specific application to oxy-fuel combustion in CO2 environments, these results suggest the error to be as low as 3% when applying apparent char burning rates from nitrogen environments.  相似文献   

12.
Char samples representing a range of combustion conditions and extents of burnout were obtained from a well-characterized laminar flow combustion experiment. Individual particles from the parent coal and char samples were characterized to determine distributions in particle volume, mass, and density at different extent of burnout. The data were then compared with predictions from a comprehensive char combustion model referred to as the char burnout kinetics model (CBK). The data clearly reflect the particle-to-particle heterogeneity of the parent coal and show a significant broadening in the size and density distributions of the chars resulting from both devolatilization and combustion. Data for chars prepared in a lower oxygen content environment (6% oxygen by vol.) are consistent with zone II type combustion behavior where most of the combustion is occurring near the particle surface. At higher oxygen contents (12% by vol.), the data show indications of more burning occurring in the particle interior. The CBK model does a good job of predicting the general nature of the development of size and density distributions during burning but the input distribution of particle size and density is critical to obtaining good predictions. A significant reduction in particle size was observed to occur as a result of devolatilization. For comprehensive combustion models to provide accurate predictions, this size reduction phenomenon needs to be included in devolatilization models so that representative char distributions are carried through the calculations.  相似文献   

13.
For oxy-combustion with flue gas recirculation, as is commonly employed, it is recognized that elevated CO2 levels affect radiant transport, the heat capacity of the gas, and other gas transport properties. A topic of widespread speculation has concerned the effect of the CO2 gasification reaction with coal char on the char burning rate. To give clarity to the likely impact of this reaction on the oxy-fuel combustion of pulverized coal char, the Surface Kinetics in Porous Particles (SKIPPY) code was employed for a range of potential CO2 reaction rates for a high-volatile bituminous coal char particle (130 μm diameter) reacting in several O2 concentration environments. The effects of boundary layer chemistry are also examined in this analysis. Under oxygen-enriched conditions, boundary layer reactions (converting CO to CO2, with concomitant heat release) are shown to increase the char particle temperature and burning rate, while decreasing the O2 concentration at the particle surface. The CO2 gasification reaction acts to reduce the char particle temperature (because of the reaction endothermicity) and thereby reduces the rate of char oxidation. Interestingly, the presence of the CO2 gasification reaction increases the char conversion rate for combustion at low O2 concentrations, but decreases char conversion for combustion at high O2 concentrations. These calculations give new insight into the complexity of the effects from the CO2 gasification reaction and should help improve the understanding of experimentally measured oxy-fuel char combustion and burnout trends in the literature.  相似文献   

14.
Pressurized oxy-fuel combustion of coal in fluidized bed (FB) holds the potential to realize low-cost CO2 capture. However, the fundamental study in this manner is still rare due to the difficult access to the pressurized oxy-FB combustion tests. In this work, the experimental study of single char combustion was firstly conducted in a visualized pressurized FB combustor under various operating conditions. Then an experimentally verified particle-scale char combustion model was developed to reveal the dependence of char combustion on parameters. Results showed that the char conversion was accelerated with the increase of pressure, mainly due to the high oxygen diffusion and char gasification. The gasification played a non-negligible role in pressurized oxy-fuel combustion, especially under high oxygen concentration and bed temperature. Increasing oxygen concentration and bed temperature not only promotes the char oxidation rate and particle temperature, but also increases the gasification rate and the share of char conversion via gasification, resulting in shortening the burnout time of char. In addition, a higher fluidization number lowered both the burnout time and peak temperature of char particle, due to the simultaneous improvement of mass and heat transfer. The influences of char size and fluidization number on char gasification conversion ratio are very weak. In addition, the quantitative analysis of the influence of different operating parameters on the combustion process was obtained by model sensitivity analysis.  相似文献   

15.
煤焦颗粒燃烧过程中,灰膜形成显著影响其燃烧特性。因此,本文借助高温沉降炉研究了61~75,75~90和90~125μm三种粒径黄陵烟煤在1273和1673 K温度下的燃烧特性与灰膜形成比例;借助扫描电镜(SEM)详细观测空心微珠颗粒内部结构,提出灰膜比例计算公式,并分析温度,粒径和碳转化率对灰膜比例的影响。结果表明,高温下大部分灰分在焦炭烧尽阶段以灰膜形式存在。灰膜比例随温度和碳转化率增加而增加,随煤粉粒径增大而减小。高温下灰分用于形成灰膜比例相对较高,这为煤焦燃尽阶段的低反应性提供了合理的解释。煤焦颗粒动态燃烧过程中灰膜形成比例随燃烧工况变化而变化。该研究为煤焦颗粒燃烧动力学模拟灰膜比例选择提供了关键数据支撑。  相似文献   

16.
This work investigated the combustion characteristics of single pulverized biomass-derived char particles. The char particles, in the size range 224–250 µm, were prepared in a drop tube furnace at pyrolysis temperatures of 1273 or 1473 K from four types of biomass particles – wheat straw, grape pomace, kiwi branches and rice husk. Subsequently, the char particles were injected upward into a confined region of hot combustion products produced by flat flames stabilized on a McKenna burner, with mean temperatures of 1460, 1580 and 1670 K and mean O2 concentrations of 4.5, 6.5 and 8.5 vol%. The data reported include particle temperature, obtained using a two-color pyrometry technique, and potassium release rate, measured using a laser-induced photofragmentation fluorescence imaging technique. In addition, particle ignition delay time and burning time, obtained from the temporal evolution of the thermal radiation intensity of the burning char particles, are also reported. The results indicated that ignition of the char particles occurs simultaneously with the starting of the potassium release, then the particle burning intensity increases rapidly until it reaches a maximum, after which both the particle temperature and the potassium release rate remain approximately constant until the end of the char oxidation process. The char ignition process is temperature controlled, and the char oxidation process is oxygen diffusion controlled, with the total potassium release being independent of the oxygen concentration and the temperature of the combustion products. The combustion behavior of the chars studied is more affected by the char type than by the conditions used to prepare them.  相似文献   

17.
A particle population balance model was developed to predict the oxidation characteristics of an ensemble of char particles exposed to an environment in which their overall burning rates are controlled by the combined effects of oxygen diffusion through particle pores and chemical reactions (the zone II burning regime). The model allows for changes in particle size due to burning at the external surface, changes in particle apparent density due to internal burning at pore walls, and changes in the sizes and apparent densities of particles due to percolation type fragmentation. In percolation type fragmentation, fragments of all sizes less than that of the fragmenting particle are produced. The model follows the conversion of particles burning in a gaseous environment of specified temperature and oxygen content. The extent of conversion and particle size, apparent density, and temperature distributions are predicted in time.Experiments were performed in an entrained flow reactor to obtain the size and apparent density data needed to adjust model parameters. Pulverized Wyodak coal particles were injected into the reactor and char samples were extracted at selected residence times. The particle size distributions and apparent densities were measured for each sample extracted. The intrinsic chemical reactivity of the char to oxygen was also measured in experiments performed in a thermogravimetric analyzer. Data were used to adjust rate coefficients in a six-step reaction mechanism used to describe the oxidation process.Calculations made allowing for fragmentation with variations in the apparent densities of fragments yield the type of size, apparent density, and temperature distributions observed experimentally. These distributions broaden with increased char conversion in a manner that can only be predicted when fragmentation is accounted for with variations in fragment apparent density as well as size. The model also yields the type of ash size distributions observed experimentally.  相似文献   

18.
During coal combustion, char chemical reaction is the slowest step, particularly in the last burnout stage, where the char consists of small amounts of carbon in a predominant ash framework. Existing kinetics models tend to deviate from experimental measurements of late char burnout due to the incomplete treatment of ash effects. Ash can improve pore evolution through vaporization, hinder oxygen transport by forming an ash film, and reduce active carbon sites and available surface per unit volume by penetrating into the char matrix. In this work, a sophisticated kinetics model, focusing on these three ash evolution mechanisms (ash vaporization, ash film, and ash dilution) during pulverized coal (PC) char combustion, is developed by integrating them into a thorough mechanistic picture. Further, a detailed comparison of the three distinct ash effects on PC char conversion during air (O2/N2) and oxy-fuel (O2/CO2) combustion is performed. For the modeled coal, the mass of ash vaporization is approximate 3 orders less than the mass of ash remaining, which participates in ash dilution and ash film formation, both in O2/N2 and O2/CO2 atmospheres. The influence of these phenomena on burnout time follows the order: ash dilution > ash film > ash vaporization. The influence of ash vaporization on burnout time is minor, but through interactions with the ash dilution and ash film forming processes it can have an impact at high extents of burnout, particularly in O2/CO2 atmospheres. In O2/N2 atmospheres the residual ash predominately exists as an ash film, whereas it mainly exists as diluted ash in the char matrix in O2/CO2 atmospheres. The residual ash particle is encased by a thick film when the ash film forming fraction is high (low ash dilution fraction). These results provide in-depth insights into the conversion of PC char and further utilization of the residual ash.  相似文献   

19.
Two-dimensional laser-induced photofragmentation fluorescence (LIPF) was employed to quantitatively visualize the potassium hydroxide (KOH) and potassium chloride (KCl) vapor in the plume above burning wood and straw pellets. In the LIPF measurement, two excitation lasers at 266 and 193 nm were adopted to discriminate KOH and KCl. Meanwhile, tunable diode laser absorption spectroscopy (TDLAS), laser-induced breakdown spectroscopy (LIBS) and two-color pyrometry were used to measure the atomic potassium concentration, total elemental potassium concentration and surface temperature of the burning pellets, respectively. The combustion environment had a temperature of 1550 K and an oxygen concentration of 4.6 vol.%. Two peaks were observed from the temporal potassium release profile of the burning wood, corresponding to the devolatilization and char oxidation stage, while only a single release peak was observed from the burning straw attributed to its high ash content. During the char oxidation and ash cooking stages, KOH was observed to be the dominant potassium species released from the wood, while only KCl was observed for the straw which had a high content of chlorine. About 45% of the total potassium in the wood samples and about 10% in the straw samples were measured to be released during the combustion process. The high content of silicon in the straw retained a considerable amount of potassium in the ash. The wood had the potassium release mainly in the char oxidation stage (∼53% of the total release), while the straw had the main release during the ash cooking stage (∼49% of the total release). During the char oxidation and ash cooking stages, about 32% of Cl was released from the straw pellets in KCl, while the other part of Cl was considered to be released during the devolatilization stage in other Cl species form, such as HCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号