首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We propose orthogonally polarized two-color laser pulses to steer tunneling electrons with attosecond precision around the ion core. We numerically demonstrate that the angles of birth and recollision, the recollision energy, and the temporal structure of the recolliding wave packet can be controlled without stabilization of the carrier-envelope phase of the laser, and that the wave packet's properties can be described by classical relations for a point charge. This establishes unique mapping between parameters of the laser field and attributes of the recolliding wave packet. The method is capable of probing ionic wave packet dynamics with attosecond resolution from an adjustable direction and might be used as an alternative to aligning molecules. Shaping the properties of the recollision wave packet by controlling the laser field may also provide new routes for improvement of attosecond pulse generation via high harmonic radiation.  相似文献   

2.
Calculations are presented for the generation of an isolated attosecond pulse in a multicycle two-color strong-field regime. We show that the recollision of the electron wave packet can be confined to half an optical cycle using pulses of up to 40 fs in duration. The scheme is proven to be efficient using two intense beams, one producing a strong field at omega and the other a strong field detuned from 2omega. The slight detuning deltaomega of the second harmonic is used to break the symmetry of the electric field over many optical cycles and provides a coherent control for the formation of an isolated attosecond pulse.  相似文献   

3.
We demonstrate that the recolliding electron wave packet, fundamental to many strong field phenomena, can be directly imaged with sub-A spatial and attosecond temporal resolution using attosecond extreme ultraviolet (XUV) pulses. When the recolliding electron revisits the parent ion, it can absorb an XUV photon yielding high energy electron and thereby providing a measurement of the electron energy at the moment of recollision. The full temporal evolution of the recollision wave packet can be reconstructed by measuring the photoelectron spectra for different time delays between the driving laser and the attosecond XUV probe. The strength of the photoelectron signal can be used to characterize the spatial distribution of the electron density in the longitudinal direction. Elliptical polarization can be used to characterize the electron probability in transversal direction.  相似文献   

4.
Temporal gating allows high accuracy time-resolved measurements of a broad range of ultrafast processes. By manipulating the interaction between an atom and an intense laser field, we extend gating into the nonlinear medium in which attosecond optical and electron pulses are generated. Our gate is an amplitude gate induced by ellipticity of the fundamental pulse. The gate modulates the spectrum of the high harmonic emission and we use the measured modulation to characterize the sub-laser-cycle dynamics of the recollision electron wave packet.  相似文献   

5.
We develop an analytical approach to describing the generation of a single attosecond burst during barrier-suppression ionization of a hydrogen atom by an intense laser pulse. We derive analytical expressions that describe the evolution of the electron wave packet in the time interval between the detachment from the atom and the collision with the parent ion for an arbitrary initial atomic state by assuming the atom to be fully ionized in one laser-field half-period. For various s-states, we derive expressions for the profile of the attosecond burst generated when the electron packet collides with the ion and analyze the dependence of its generation efficiency on the principal quantum number n of the initial atomic state. The results obtained are compared with the results of three-dimensional numerical calculations. We show that the attosecond pulse generation efficiency can be several orders of magnitude higher than that in the case of ionization from the ground state when pre-excited atomic states are used.  相似文献   

6.
Using orthogonally polarized 800 nm and 400 nm laser pulses, we have generated high harmonics in ethane (C(2)H(6)). We observe that the intensity of each harmonic order modulates with the attosecond delay between the two laser fields. The modulation period of the low even harmonics is twice that of the period of modulation of the other harmonics. By comparing with theoretical calculation, we show that the double periodicity is a result of the electron wave packet motion in the valence shell of C(2)H(6) on the attosecond time-scale. Our method is a general approach to measuring internal electron dynamics which does not require molecular alignment, making it applicable to more complex molecules than previous approaches.  相似文献   

7.
The kinetic energy distribution of D+ ions resulting from the interaction of a femtosecond laser pulse with D2 molecules is calculated based on the rescattering model. From analyzing the molecular dynamics, it is shown that the recollision time between the ionized electron and the D+2 ion can be read from the D+ kinetic energy peaks to attosecond accuracy. We further suggest that a more precise reading of the clock can be achieved by using shorter fs laser pulses (about 15 fs).  相似文献   

8.
We demonstrate a quantum stroboscope based on a sequence of identical attosecond pulses that are used to release electrons into a strong infrared (IR) laser field exactly once per laser cycle. The resulting electron momentum distributions are recorded as a function of time delay between the IR laser and the attosecond pulse train using a velocity map imaging spectrometer. Because our train of attosecond pulses creates a train of identical electron wave packets, a single ionization event can be studied stroboscopically. This technique has enabled us to image the coherent electron scattering that takes place when the IR field is sufficiently strong to reverse the initial direction of the electron motion causing it to rescatter from its parent ion.  相似文献   

9.
 近年来在可见光谱范围内已经把激光脉冲压缩到接近一个光学周期(2~3 fs)的物理极限,几fs的时间分辨精度可以描述分子化学反应过程,但是要探测远小于可见光周期的电子跃迁过程则需要阿秒(as)量级的光脉冲。利用脉冲间具有相同载波包络相位的阿秒脉冲序列能把可见光波段的光学频率梳向极紫外波段扩展;利用电子和离子碰撞复合过程短于一个光周期这个时间窗,通过测量激光场椭圆极化率对电子轨迹的微扰实现了as精度的分辨率;通过测量碰撞复合过程中的高能电子的辐射谱可以重构阿秒X光脉冲以及探测强场下束缚态和连续态电子动力学。  相似文献   

10.
余本海  张东玲  汤清彬 《中国物理 B》2011,20(8):83201-083201
Wave-particle duality is one of the most fundamental and mysterious natures of matters.Here,we present an interesting scheme of isolated electron wave packet diffraction with a few-cycle laser pulse and an extreme ultraviolet (XUV) pulse.The diffraction fringes are clearly present in the laser dressed XUV photoelectron spectra,strongly resembling the Airy diffraction pattern of optical waves.This phenomenon suggests a great potential of attosecond diffractometry.According to this scheme we also propose a simple method to determine the XUV pulse duration from the photoelectron spectra with a rather high resolution.  相似文献   

11.
Photoionization time delays have been studied in many streaking experiments in which an attosecond pulse is used to ionize the atomic or solid state target in the presence of a dressing infrared laser field. Among the methods of extracting the time delay from the streaking spectrogram, the simplest one is to calculate the first moment of the spectrogram and to measure its offset relative to the vector potential of the infrared field. The first moment method has been used in many theoretical simulations and analysis of experimental data, but the meaning of this offset needs to be investigated. We simulate the spectrograms and compare the extracted time delay from the first moment with the input Wigner delay. In this study, we show that the first moment method is valid only when the group delay dispersions corresponding to both the spectral phase of the attosecond pulse and the phase of the single-photon transition dipole matrix element of the target are small. Under such circumstance, the electron wave packet behaves like a classical particle and the extracted time delay can be related to a group delay in the photoionization process. To avoid ambiguity and confusion, we also suggest that the photoionization time delay be replaced by photoionization group delay and the Wigner time delay be replaced by Wigner group delay.  相似文献   

12.
We use an interferometic scheme to extract the phase distribution of the electron wave packet from above-threshold ionization in elliptically polarized laser fields. In this scheme, an electron wave packet released from a circularly polarized laser pulse acts as a reference wave and interferes with the electron wave packet ionized by a time-delayed counter-rotating elliptically polarized laser field. The generated vortex-shaped interference pattern in the photoelectron momentum distribution enables us to extract the phase distribution of the electron wave packet in the elliptically polarized laser pulse with high precision. By artificially screening the ionic potential at different ranges when solving the time-dependent Schördinger equation, we find that the angle-dependent phase distribution of the electron wave packet in the elliptically polarized laser field shows an obvious angular shift as compared to the strong-field approximation, whose value is the same as the attoclock shift. We also show that the amplitude of the angle-dependent phase distribution is sensitive to the ellipticity of the laser pulse, providing an alternative way to precisely calibrate the laser ellipticity in the attoclock measurement.  相似文献   

13.
We identify a laser configuration in which attosecond electron wave packets are ionized, accelerated to multi-MeV energies, and refocused onto their parent ion. Magnetic focusing of the electron wave packet results in return currents comparable with large scale accelerator facilities. This technique opens an avenue towards imaging attosecond dynamics of nuclear processes.  相似文献   

14.
Mingrui He 《中国物理 B》2021,30(12):123202-123202
Coherent superposition of electronic states induces attosecond electron motion in molecules. We theoretically investigate the strong-field ionization of this superposition state by numerically solving the time-dependent Schrödinger equation. In the obtained photoelectron momentum distribution, an intriguing bifurcation structure appears in the strong-field holographic interference pattern. We demonstrate that this bifurcation structure directly provides complete information about the status of the transient wave function of the superposition state:the horizontal location of the bifurcation in the momentum distribution reveals the relative phase of the involved components of the superposition state and the vertical position indicates the relative coefficient. Thus, this bifurcation structure takes a snapshot of the transient electron wave packet of the superposition state and provides an intuitive way to monitor electron motion in molecules.  相似文献   

15.
Our work is based on high harmonic generation in a gaseous medium (helium ion), by exploiting gold bowtie nanostructures as laser field amplifiers. As the result of emission of a laser pulse, the wave function of the atom varies with time; so, it is necessary to solve 1D time-dependent Schrödinger equation by means of split operator method. By illumination of a short duration, long wavelength three color laser pulse inside the gap, the enhanced field not only changes with time, but also varies in space. In this work we considered this space inhomogeneity in linear and nonlinear schemes. We show that in nonlinear case, the plateau region is more extended. We also show that in larger gaps, cutoff occurs on higher frequencies. But limitation of electron motion in bowtie nanostructures leads to the choice of an optimum 16 nm gap size in our case. We predict that, by the superposition of supercontinuum harmonics, a 26 attosecond pulse can be generated.  相似文献   

16.
Zhou Y  Huang C  Liao Q  Hong W  Lu P 《Optics letters》2011,36(15):2758-2760
Ionization of molecules by strong laser fields launches an electron wave packet. This electron wave packet, which can be driven back by the field to recollide with the parent ion, has been widely explored to probe the ultrafast nuclear dynamics. We numerically demonstrate the precise control of the temporal characteristic of the recolliding electron wave packet (REWP) by orthogonally polarized two-color fields. Through changing the relative phase of the two fields, the revisit time of REWP can be manipulated with a resolution of less than 200 attos, thus significantly improving the resolution of the well known molecular clock. This provides an efficient method for real-time observation of the ultrafast molecular dynamics with attosecond resolution.  相似文献   

17.
Electron-ion recombination in a laser-induced electron recollision is of fundamental importance as the underlying mechanism responsible for the generation of high-harmonic radiation and hence for the production of attosecond pulse trains in the extreme ultraviolet and soft x-ray spectral regions. By using an ion beam target, remotely prepared to be partially in long-lived excited states, the recombination process has for the first time been directly observed and studied.  相似文献   

18.
罗牧华  张秋菊  闫春燕 《物理学报》2010,59(12):8559-8565
利用一维粒子模拟程序研究了超相对论激光脉冲与稠密等离子体相互作用得到的阿秒脉冲.从超相对论近似的角度分析了电子运动行为和高次谐波的产生,发现当等离子体密度一定时,随着无量纲相似参数S的减小,阿秒脉冲的转换效率呈先增大后减小的趋势,因此选择适当的光强就可以得到转换效率较高的阿秒脉冲.当S一定时,随着等离子体密度的增加,阿秒脉冲转换效率有增大的趋势.这说明用适当的光强照射更稠密度的等离子体靶面,可以产生更强的阿秒脉冲.  相似文献   

19.
Using attosecond light pulses to doubly ionize a two-electron wave packet of helium, we showed that the time-resolved correlated motion of the two electrons can be probed by measuring their six-dimensional momentum distributions. For simple wave packets, we showed that the measured momenta, when analyzed in appropriate coordinates, can reveal the stretching, the rotational, and the bending vibrational modes of their joint motion in momentum space, in spite of the Coulomb distortion in the final states.  相似文献   

20.
介绍了长波长光源的发展以及其在非线性光学以及强场物理方面的应用。长波长光源的产生以各种方式推动了强场和阿秒物理学的发展:在隧穿机制下光电离的研究,用于X射线成像的飞秒量级KeV辐射源的产生。考虑到这些前景,何如产生高能量、长波长以及周期量级的光源是一件非常有挑战性的工作。在过去几年,一直致力于产生和发展波长在2~3μm、载波相位稳定,周期量级的强光源,其重复频率从几千赫兹到百千赫兹。重点介绍这些光源的发展,以及脉冲相关测量的方法。此外,以某一种光源作为例子来介绍其在多倍频超连续谱的产生,分子的电离动力学以及阿秒光源生产等方面的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号