首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
张家泰 《计算物理》2000,17(5):504-510
从考虑动理学效应的受激散射不稳定性的线性理论出发,对于n=2的Maxwell分布函数直到n=5的饱和情况的超高斯分布函数,计算了电子等离子体波和离子声波的频率和阻尼率。对受激喇曼散射和受激布里渊散射进行分析,结果表明,在激光高Z等离子体中,或者在具有激光热斑的中等Z等离子体中,电子等离子体波的阻尼率降低很多,离子声波的频率比Maxwell分布情况升高约15%。这些结果可和实验进行比较。  相似文献   

2.
We present the results of kinetic numerical simulations that demonstrate the existence of a novel branch of electrostatic nonlinear waves driven by particle trapping processes. These waves have an acoustic-type dispersion with phase speed comparable to the ion thermal speed and would thus be heavily Landau damped in the linear regime. At variance with the ion-acoustic waves, this novel electrostatic branch can exist at a small but finite amplitude even for low values of the electron to ion temperature ratio. Our results provide a new interpretation of observations in space plasmas, where a significant level of electrostatic activity is observed in the high frequency region of the solar-wind turbulent spectra.  相似文献   

3.
Taking into account the effects of electron exchange-correlation potential, particle collisions, the nonlinear dynamical properties of planar and nonplanar (cylindrical and spherical) electrostatic ion-acoustic waves (IAWs) are investigated theoretically and numerically in quantum plasmas. With the aid of quantum hydrodynamic model and the reductive perturbation technique, the planar and nonplanar dispersive-dissipative equations (modified Kakutani–Kawahara equations) are obtained to elucidate the nonlinear quantum IAW profiles. The influences of the electron exchange-correlation potential, Bohm potential and collisional effects in the wave dynamics are studied. For a typical parametric range, relevant for laboratory and astrophysical environments, it is found that the contribution from exchange-correlation potential to be prominent in comparison to the effect due to the Bohm potential. Also, numerical simulation predicts that the dissipation induced by the particle collisions leads to the evolution of low frequency shock structures in dense quantum plasmas.  相似文献   

4.
The linear characteristics of the unstable mode of ion-acoustic waves are examined in an electrostatic electron-ion plasma composed of streaming hot electrons, non-streaming cold electrons and dynamical positive ions. The plasma under consideration is modeled by using a non-gyrotropic nonextensive q-distribution function in which the free energy source for wave excitation is provided by the relative directed motion of streaming hot electrons with respect to the other plasma species. In the frame work of kinetic model, a linearized set of Vlasov–Poisson's equations are solved to obtain the analytical expressions for dispersion relation and Landau damping rate. The threshold condition for the unstable ionacoustic wave is derived to assess the stability of the wave in the presence of nonextensive effects. Growth in the wave spectrum and nontrivial effects of q-nonextensive parameter on the ion-acoustic waves can be of interest for the readers in the regions of Saturns' s magnetosphere.  相似文献   

5.
何彩霞  薛具奎 《中国物理 B》2013,22(2):25202-025202
Parametric instabilities induced by the nonlinear interaction between high frequency quantum Langmuir waves and low frequency quantum ion-acoustic waves in quantum plasmas with the electron exchange-correlation effects are presented.By using the quantum hydrodynamic equations with the electron exchange-correlation correction,we obtain an effective quantum Zaharov model,which is then used to derive the modified dispersion relations and the growth rates of the decay and four-wave instabilities.The influences of the electron exchange-correlation effects and the quantum effects on the existence of quantum Langmuir waves and the parametric instabilities are discussed in detail.It is shown that the electron exchange-correlation effects and quantum effects are strongly coupled.The quantum Langmuir wave can propagate in quantum plasmas only when the electron exchange-correlation effects and the quantum effects satisfy a certain condition.The electron exchange-correlation effects tend to enhance the parametric instabilities,while quantum effects suppress the instabilities.  相似文献   

6.
The nonlinear wave structures of large amplitude ion-acoustic waves are investigated in an electron beam-plasma system with trapped electrons, by the pseudopotential method. The speed of the ion-acoustic wave increases as the effect of trapped electrons decreases and the beam temperature increases. The region of the existence of ion-acoustic waves is examined, showing that the condition of the existence sensitively depends on the parameters such as the effects of the electron beam density and temperature, electrostatic potential, and the effect of trapped electrons. It turns out that the region of existence spreads as the effect of trapped electrons decreases and beam temperature increases. New findings of large amplitude ion-acoustic waves in an electron beam-plasma system with trapped electrons are predicted  相似文献   

7.
8.
Small amplitude ion-acoustic double layers in an unmagnetized and collisionless plasma consisting of cold positive ions, q-nonextensive electrons, and a cold electron beam are investigated. Small amplitude double layer solution is obtained by expanding the Sagdeev potential truncated method. The effects of entropic index q, speed and density of cold electron beam on double layer structures are discussed.  相似文献   

9.
BISWAJIT SAHU 《Pramana》2011,76(6):933-944
Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized two- species relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive perturbation method. A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects significantly modify the properties of quantum ion-acoustic waves. Also the effect of the quantum parameter H on the nature of solitary wave solutions is studied in some detail.  相似文献   

10.
I. N. Kosarev 《Technical Physics》2008,53(10):1296-1301
The kinetic theory of plasma based on the construction of propagators for the plasma particle distribution function is generalized to the case of a nonideal plasma. This theory is used for calculating the permittivity of a homogeneous nonideal plasma consisting of one species of ions neutralized by the polarized electron background. The dispersion relations are derived for ion-acoustic and low-frequency transverse waves in the plasma.  相似文献   

11.
A numerical treatment of the kinetic dispersion equation for ion-acoustic waves in a plasma exposed to a high frequency pump field is presented. Maximum growth rates for both the decay and the purely growing instability are calculated as functions of the pump frequency and the pump power. A static electron drift velocity is included.  相似文献   

12.
We report the first Thomson-scattering measurements of the growth of ion-acoustic waves in well-characterized multi-ion-species plasmas consisting of gold and beryllium. We observe that only the berylliumlike mode grows, verifying linear kinetic theory. In addition, a twofold increase in ion temperature is measured when ion-acoustic waves are excited to large amplitudes by stimulated Brillouin scattering (SBS). This increase in ion temperature is a strong indication of hot ions due to trapping. We explain the measured SBS reflectivity by nonlinear detuning of the SBS instability due to these trapping effects.  相似文献   

13.
A S Sharma  B Buti 《Pramana》1978,10(6):629-637
The envelope properties of ion-acoustic waves in a two-electron-temperature plasma are studied. The nonlinear Schrödinger equation describing the envelope of these waves is obtained from the plasma fluid equations by employing the Krylov-Bogoliubov-Mitropolsky perturbation method. It is shown that the ion-acoustic waves can be modulationally unstable or stable depending on the ratios of the densities and the temperatures of the hot and the cold electron components. Even a small fraction of the cold electron component can drastically affect the stability of the system.  相似文献   

14.
A theory of stimulated Brillouin scattering (STBS) in a plasma with ion-acoustic turbulence is developed using concepts of parametric instability under conditions when equations of two-temperature hydrodynamics can be used to describe ion-acoustic perturbations of the electron density. The temporal growth rate of the absolute instability and the spatial gain of the scattered wave are determined. The dependence of the threshold density of the radiation flux on the angle between the scattering wave vector and the direction of anisotropy of the turbulent noise is described. A new effect of STBS forbiddenness caused by anomalous turbulent heating of the ions is predicted for a plasma with a high level of turbulent noise.  相似文献   

15.
The Landau damping of the dust ion-acoustic wave (DIAW) in a dusty plasma with non-extensive distributed components is analysed relying on the kinetic approach. The electron, ion, and dust particles are effectively modelled by the non-extensive distribution function of the Tsallis statistics. For a collisionless plasma with different values of plasma components indices, the general dispersion relation is achieved, and the non-extensivity effects on the frequency, as well as the Landau damping of the DIAW, are studied. We show that for , the preliminary results of the Maxwellian plasma are obtained. The decrease of wave damping is achieved by increasing the coefficient q index and the ion-to-electron density ratio. The damping rate also increases with an increasing ion-to-electron temperature ratio.  相似文献   

16.
In tokamak plasmas, it is recognized that ITG (ion temperature gradient instability) and trapped electron modes (TEM) are held responsible for turbulence giving rise to anomalous transport. The present work focuses on the building of a model including trapped kinetic ions and trapped kinetic electrons. For this purpose, the dimensionality is reduced by averaging the motion over the cyclotron motion and the “banana” orbits, according to the fact that the instabilities are characterized by frequencies of the order of the low trapped particle precession frequency. Moreover, a set of action-angle variables is used. The final model is 4D (two-dimensional phase space parametrized by the two first adiabatic invariants namely the particle energy and the trapping parameter). In this paper, the trapped ion and electron modes (TIM and TEM) are studied by using a linear analysis of the model. This work is currently performed in order to include trapped electrons in an existing semi lagrangian code for which TIM modes are already taken into account. This study can be considered as a first step in order to include kinetic trapped electrons in the 5D gyrokinetic code GYSELA [J. Abiteboul et al., ESAIM Proc. 32, 103 (2011)].  相似文献   

17.
H. Alinejad 《Physics letters. A》2009,373(40):3663-3666
Fully nonlinear propagation of ion-acoustic solitary waves in an unmagnetized electron-positron-ion plasma is investigated. A more realistic situation is considered in which electrons interact with the wave potential during its evolution and, follow the vortex-like excavated trapped distribution. The basic properties of large amplitude solitary waves are studied by deriving an energy integral equation involving Sagdeev potential. It is shown that effects of such electron behavior and positron concentration change the maximum values of the Mach number and amplitude for which solitary waves can exist. The small amplitude limit is also investigated by expanding the Sagdeev potential to include third-order nonlinearity of electric potential. In this case, exact analytical solution is obtained which is related to the contribution of the resonant electron to the electron density. It is shown from both highly and weakly nonlinear analysis that the plasma system under consideration supports only compressive solitary waves.  相似文献   

18.
In this study, we investigate the oblique collision of two ion-acoustic waves (IAWs) in a three-species plasma composed of electrons, positrons, and ions. We use the extended Poincare-Lighthill-Kuo (PLK) method to derive the two-sided Korteweg-de-Vries (KdV) equations and Hirota’s method for soliton solutions. The effects of the ratio (δ) of electron temperature to positron temperature and the ratio (p) of the number density of positrons to that of electrons on the phase shift are studied. It is observed that the phase shift is significantly influenced by the parameters mentioned above. It is also observed that for some time interval during oblique collision, one practically motionless composite structure is formed, i.e., when two ion-acoustic waves with the same amplitude interact obliquely, a new non-linear wave is formed during their collision, which means that ahead of the colliding ion-acoustic solitary waves, both the amplitude and width are greater that those of the colliding solitary waves. As a result, the nonlinear wave formed after collision is a new one and is delayed. The oblique collision of solitary waves in a two-dimensional geometry is more realistic in high-energy astrophysical pair plasmas such as the magnetosphere of neutron stars and black holes.  相似文献   

19.
This paper presents a self-consistent nonlinear theory of the current and energy modulations when an electron beam propagates through an inductively-loaded wide gap cavity. The integro-differential equations axe obtained to describe the modulation of the beam current and kinetic energy. A relativistic klystron amplifier (RKA) model is introduced, which uses an inductively-loaded wide gap cavity as an input cavity. And a numerical code is developed for the extended model based on the equations, from which some relations about the modulated current and modulated energy are numerically given.  相似文献   

20.
Three mechanisms for anomalous magnetic field penetration have been investigated in computer simulations of Sandia's plasma opening switch (POS). The POS simulations have been performed using the two-dimensional (2-D) two-temperature single-fluid magnetohydrodynamic (MHD) code HAM [1], [2]. The three penetration mechanisms considered are 1) the Chodura model based on the ion-acoustic instability where the saturated value of the anomalous collision frequency is approximated by the ion plasma frequency; 2) a model based on the lower hybrid instability in which the anomalous collision frequency is proportional to both the ion plasma frequency and the electron drift velocity; and 3) a model that limits the ion drift velocity to the plasma influx velocity. Two-dimensional MHD calculations of the POS will be presented which show these models to be qualitatively similar for densities above a few 1013 cm-3, though at lower densities they can be quite different. The calculations are compared to experiments, and some agreement is seen with the lower hybrid model. The other models compare only marginally to experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号