首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
On the condition of electric-LO phonon strong coupling in a parabolic quantum dot, we obtain the eigenenergy and the eigenfunctions of the ground state and the first-excited state using the variational method of Pekar type. This system in a quantum dot may be employed as a two-level quantum system-qubit. When the electron is in the superposition state of the ground state and the first-excited state, we obtain the time evolution of the electron density. The relations of the probability density of electron on the temperature and the electron-LO-phonon coupling constant and the relations of the period of oscillation on the temperature, the electron-LO-phonon coupling constant, the Coulomb binding parameter and the confinement length are derived. The results show that the probability density of electron oscillates with a period when the electron is in the superposition state of the ground and the first-excited state, and show that there are different laws that the probability density of electron and the period of oscillation change with the temperature and the electron-LO-phonon coupling constant when the temperature is lower or higher. And it is obtained that the period of oscillation decreases with increasing the Coulomb bound potential and increases with increasing the confinement length not only at lower temperatures but also at higher temperatures.  相似文献   

2.
We theoretically investigate the finite-temperature structure and collective excitations of a self-bound ultradilute Bose droplet in a flat space realized in a binary Bose mixture with attractive inter-species interactions on the verge of meanfield collapse. As the droplet formation relies critically on the repulsive force provided by Lee–Huang–Yang quantum fluctuations, which can be easily compensated by thermal fluctuations, we find a significant temperature effect in the density distribution and collective excitation spectrum of the Bose droplet. A finite-temperature phase diagram as a function of the number of particles is determined. We show that the critical number of particles at the droplet-to-gas transition increases dramatically with increasing temperature. Towards the bulk threshold temperature for thermally destabilizing an infinitely large droplet, we find that the excitation-forbidden, self-evaporation region in the excitation spectrum, predicted earlier by Petrov using a zero-temperature theory, shrinks and eventually disappears. All the collective excitations, including both surface modes and compressional bulk modes, become softened at the droplet-to-gas transition. The predicted temperature effects of a self-bound Bose droplet in this work could be difficult to measure experimentally due to the lack of efficient thermometry at low temperatures. However, these effects may already present in the current cold-atom experiments.  相似文献   

3.
A systematic study of the two-dimensional electron gas at La AlO_3/SrTiO_3(110) interface reveals an anisotropy along two specific directions, [001] and 1ī0. The anisotropy becomes distinct for the interface prepared under high oxygen pressure with low carrier density. Angular dependence of magnetoresistance shows that the electron confinement is stronger along the 1ī0 direction. Gate-tunable magnetoresistance reveals a clear in-plane anisotropy of the spin–orbit coupling,and the spin relaxation mechanism along both directions belongs to D'yakonov–Perel'(DP) scenario. Moreover, in-plane anisotropic superconductivity is observed for the sample with high carrier density, the superconducting transition temperature is lower but the upper critical field is higher along the 1ī0 direction. This in-plane anisotropy could be ascribed to the anisotropic band structure along the two crystallographic directions.  相似文献   

4.
With thermal Bose–Fermi mapping method, we investigate the Tonks–Girardeau gas at finite temperature. It is shown that at low temperature, the Tonks gas displays the Fermi-like density profiles, and with the increase in temperature, the Tonks gas distributes in wider region. The reduced one-body density matrix is diagonal dominant in the whole temperature region, and the off-diagonal elements shall vanish rapidly with the deviation from the diagonal part at high temperature.  相似文献   

5.
In terms of the Nambu Jona-Lasinio (NJL) mechanism, the dynamical symmetry breaking of a simple local gauge model is investigated. An important relation between the vacuum expectation value of gauge fields and scalar fields is derived by solving the Euler equation for the gauge fields. Based on this relation the SU(3) gauge potential is given which can be used to explain the asymptotic freedom and confinement of quarks in a hadron. The confinement behavior at finite temperatures is also investigated and it is shown that color confinement at zero temperature can be melted away under high temperatures.  相似文献   

6.
We present a theoretical investigation of THz long-range surface plasmon polaritons propagating on thin layers of InSb.The metallic behavior of doped semiconductors at THz frequencies allows the excitation of surface plasmon polaritons with propagation and confinement lengths that can be actively controlled.This control is achieved by acting on the free carrier density,which can be realized by changing the temperature of InSb.  相似文献   

7.
We study the entanglement in anisotropie (1/2,1) mixed-spin Heisenberg XY model under the presence of an external magnetic field at thermal equilibrium. By adjusting the anisotropic parameter and the magnetic field, one is able to obtain entanglement at higher temperature. We find the evidence of the quantum phase transition in the model and observe that the quantum phase transition point at low temperature moves toward weak magnetic field with the increase of the anisotropic parameter.  相似文献   

8.
We investigate the thermodynamic properties of an ideal charged Bose gas confined in an anisotropic harmonic potential and a constant magnetic field. Using an accurate density of states, we calculate analytically the thermodynamic potential and consequently various intriguing thermodynamic properties, including the Bose–Einstein transition temperature, the specific heat, magnetization, and the corrections to these quantities due to the finite number of particles are also given explicitly. In contrast to the infinite number of particles scenarios, we show that those thermodynamic properties,particularly the Bose–Einstein transition temperature depends upon the strength of the magnetic field due to the finiteness of the particle numbers, and the collective effects of a finite number of particles become larger when the particle number decreases. Moreover, the magnetization varies with the temperature due to the finiteness of the particle number while it keeps invariant in the thermodynamic limit N →∞.  相似文献   

9.
王建辉  马永利 《中国物理 B》2010,19(5):50502-050502
We have investigated the thermodynamic behaviour of ideal Bose gases with an arbitrary number of particles confined in a harmonic potential.By taking into account the conservation of the total number N of particles and using a saddle-point approximation,we derive analytically the simple explicit expression of mean occupation number in any state of the finite system.The temperature dependence of the chemical potential,specific heat,and condensate fraction for the trapped finite-size Bose system is obtained numerically.We compare our results with the usual treatment which is based on the grand canonical ensemble.It is shown that there exists a considerable difference between them at sufficiently low temperatures,especially for the relative small numbers of Bose atoms.The finite-size scaling at the transition temperature for the harmonically trapped systems is also discussed.We find that the scaled condensate fractions for various system sizes and temperatures collapse onto a single scaled form.  相似文献   

10.
郝亚江 《中国物理 B》2011,20(6):60307-060307
This paper investigates the ground-state properties of the mixture composed of the strongly interacting Tonks-Girardeau gas and spin polarized Fermi gas confined in one-dimensional harmonic traps, where the interaction between the Bose atoms and Fermi atoms is tunable. With a generalized Bose-Fermi transformation the mixture is mapped into a two-component Fermi gas. The homogeneous Fermi gas is exactly solvable by the Bethe-ansatz method and the ground state energy density can be obtained. Combining the ground-state energy function of the homogeneous system with local density approximation it obtains the ground-state density distributions of inhomogeneous mixture. It is shown that with the increase in boson-fermion interaction, the system exhibits composite-fermionization crossover.  相似文献   

11.
R. Ramakumar  A.N. Das 《Physica A》2011,390(2):208-213
We present a theoretical study of Bose-Einstein condensation in highly anisotropic harmonic traps. The bosons are considered to be moving in an optical lattice in an overall anisotropic harmonic confining potential. We find that two-step condensation occurs for lattice bosons at much reduced harmonic potential anisotropy when compared to the case of an ideal Bose gas in an anisotropic harmonic confinement. We also show that when the bosons are in an isotropic harmonic confinement but with highly anisotropic hopping in the optical lattice, two-step condensation does not occur. We interpret some of our results using single boson density of energy states corresponding to the potentials faced by the bosons.  相似文献   

12.
We derive an exact analytic expression for the three-body local correlations in the Lieb-Liniger model of 1D Bose gas with contact repulsion. The local three-body correlations control the thermalization and particle loss rates in the presence of terms which break integrability, as is realized in the case of 1D ultracold bosons. Our result is valid not only at finite temperature but also for a large class of nonthermal excited states in the thermodynamic limit. We present finite temperature calculations in the presence of external harmonic confinement within local density approximation, and for a highly excited state that resembles an experimentally realized configuration.  相似文献   

13.
《Nuclear Physics B》2006,748(3):524-539
We suggest that the gauge-invariant hedgehog-like structures in the Wilson loops are physically interesting degrees of freedom in the Yang–Mills theory. The trajectories of these “hedgehog loops” are closed curves corresponding to center-valued (untraced) Wilson loops and are characterized by the center charge and winding number. We show numerically in the SU(2) Yang–Mills theory that the density of hedgehog structures in the thermal Wilson–Polyakov line is very sensitive to the finite-temperature phase transition. The (additively normalized) hedgehog line density behaves like an order parameter: The density is almost independent of the temperature in the confinement phase and changes substantially as the system enters the deconfinement phase. In particular, our results suggest that the (static) hedgehog lines may be relevant degrees of freedom around the deconfinement transition and thus affect evolution of the quark–gluon plasma in high-energy heavy-ion collisions.  相似文献   

14.
In this paper, the thermodynamic properties of a rotating Bose gas in harmonic trap are investigated. In particularly, the condensate fraction, critical temperature and heat capacity are analytically calculated. A simple semiclassical approximation, which is the density of state approach, is suggested. This approach is able to include the effects, such as the finite size and the chemical potential when becomes equal to the energy of the lowest energy state, that altered the rotating ideal Bose gas simultaneously. The calculated results show that the thermodynamic properties depend strongly on the rotation rate. The rapid rotation leads to a highly anisotropic confinement potential. The possibility for dimensionality cross-over to lower dimensions for this system is discussed. We compare the outcome results with the experimental measured data of Coddington et al. [Phys. Rev. A 70, 063607 (2004)].  相似文献   

15.
16.
17.
The transition temperature for an anisotropic Bose gas, and the lattice temperature rise following pulsed photo-excitation, are computed. Comparison with experimentally realizable conditions shows that Bose condensation of excitonic molecules in CdSe cannot be attained following pulsed photoexcitation.  相似文献   

18.
利用局域密度近似(LDA)导出了简谐势阱中存在弱相互作用的旋转玻色气体发生玻色-爱因斯坦凝聚时的粒子数、相变温度和基态粒子占据率的解析表达式,探讨了粒子间相互作用对相变温度和基态粒子占据率的影响.计算表明,当粒子间的相互作用消失时,所有解析结果均能够与无相互作用的旋转理想玻色气体获得很好的一致.  相似文献   

19.
Optical emission spectroscopic studies have been carried out on the laser-induced copper plasma generated in the process of laser-driven flyer (with the substrate confinement). The copper plasma in the air (without the substrate confinement) has also been researched in order to know the differences between the plasma with the confinement and that without the confinement. The plasma is assumed to be in local thermodynamic equilibrium. The result shows that, under the same laser fluence, the plasma exists a longer time with the confinement. The time-resolved electron temperature and density with the confinement are higher than those with no confinement. The substrate deposited with Cu foil plays an important role in enhancing the temperature and the density of the plasma. The electron temperature and density with confinement increase with a larger scope as the laser fluence increases than that with no confinement.   相似文献   

20.
A neutral gas rarefaction caused by ionization processes occurs in the plasma of the low pressure gas discharges. The velocity distributions, the particle density, the transversal drift velocity and the energy density of the neutral gas are calculated both for the plane and for the cylindrical positive column under free fall conditions. The neutral gas rarefaction is taken into account. It is shown, that the velocity distributions is non-Maxwellian and anisotropic. The pressure tensor is anisotropic, too. Particle density and energy density of neutral gas decrease with increasing electron density and electron temperature relatively homogeneously over the cross section of the column. Only, if the degree of ionization is high, these densities are much smaller near the axis than at the wall. Decreasing neutral gas temperature causes a similar change in the particle density profile as increasing electron density and electron temperature do. The transverse neutral gas pressure decreases from the axis to the wall in all cases. In the steady-state column an upper limit exists for the transverse particle current density of the neutral gas and of the ion gas. This limit depends on the gas temperature, the filling pressure and the atomic mass of the filling gas. In the appendix the Boltzmann equation is given in a form, which is suitable to investigate cylindrical problems not only for simple examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号