首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elliptic partial differential equations (PDEs) are widely used to model real-world problems. Due to the heterogeneous characteristics of many naturally occurring materials and man-made structures, devices, and equipments, one frequently needs to solve elliptic PDEs with discontinuous coefficients and singular sources. The development of high-order elliptic interface schemes has been an active research field for decades. However, challenges remain in the construction of high-order schemes and particularly, for nonsmooth interfaces, i.e., interfaces with geometric singularities. The challenge of geometric singularities is amplified when they are originated from two or more material interfaces joining together or crossing each other. High-order methods for elliptic equations with multi-material interfaces have not been reported in the literature to our knowledge. The present work develops matched interface and boundary (MIB) method based schemes for solving two-dimensional (2D) elliptic PDEs with geometric singularities of multi-material interfaces. A number of new MIB schemes are constructed to account for all possible topological variations due to two-material interfaces. The geometric singularities of three-material interfaces are significantly more difficult to handle. Three new MIB schemes are designed to handle a variety of geometric situations and topological variations, although not all of them. The performance of the proposed new MIB schemes is validated by numerical experiments with a wide range of coefficient contrasts, geometric singularities, and solution types. Extensive numerical studies confirm the designed second order accuracy of the MIB method for multi-material interfaces, including a case where the derivative of the solution diverges.  相似文献   

2.
陆见光  唐卷  秦小林  冯勇 《物理学报》2016,65(11):110501-110501
混沌系统的跟踪控制是近年来非线性控制领域研究的热点之一. 本文提出了一种基于快速下降控制方法的保群算法, 此方法使受控混沌系统能够快速稳定到相空间的一个不动点; 另外提出一种基于滑模控制方法的保群算法, 此方法使受控混沌系统能够快速跟踪一个确定的运动轨迹. 应用这两种新方法分别对两个经典的混沌系统(Lorenz系统和Duffing系统)进行了相应的数值实验, 实验结果表明这两种方法都具用较高的精度和稳定性.  相似文献   

3.
AMC and EBG behaviors are respectively characterized by reflection phase method and dispersion diagram. A fast and simple analytical model based on transmission line theory is proposed for each analysis. The validity of these analytical methods is verified by a comparison between circuit representations, measurements and numerical results.  相似文献   

4.
We present a time-symmetrical integer arithmetic algorithm for numerical (molecular dynamics) simulations of classical fluids. This algorithm is used to illustrate, through concrete examples, that time-asymmetric evolutions are typical for systems of many particles evolving according to reversible microscopic dynamics and to calculate the asymptotic behavior of the velocity autocorrelation function with an improved accuracy. The equivalence between equilibrium time averages and microcanonical ensemble averages is checked via two new sampling methods for computing microcanonical averages of classical systems.  相似文献   

5.
An Eulerian hyperbolic diffuse interface model for elastic–plastic solid–fluid interaction is constructed. The system of governing equations couples Euler equations of compressible fluids and a visco-plastic model of Maxwell type materials (the deviatoric part of the stress tensor decreases during plastic deformations) in the same manner as models of multicomponent fluids. In particular, the model is able to create interfaces which were not present initially.The model is thermodynamically compatible: it verifies the entropy inequality. However, a numerical treatment of the model is particularly challenging. Indeed, the model is non-conservative, so a special numerical splitting is proposed to overcome this difficulty. The numerical algorithm contains two relaxation procedures. One of them is physical and is related to the plastic relaxation mechanism (relaxation toward the yield surface). The second one is numerical. It consists in replacing the algebraic equation expressing a mechanical equilibrium between components by a partial differential equation with a short relaxation time. The numerical method was tested in 1D case (Wilkins’ flying plate problem), 2D plane case (impact of a projectile on a plate) and axisymmetrical case (Taylor test problem, impact with penetration effects, etc.). Numerical examples show the ability of the model to deal with real physical phenomena.  相似文献   

6.
The Poisson-Boltzmann (PB) equation is an established multiscale model for electrostatic analysis of biomolecules and other dielectric systems. PB based molecular dynamics (MD) approach has a potential to tackle large biological systems. Obstacles that hinder the current development of PB based MD methods are concerns in accuracy, stability, efficiency and reliability. The presence of complex solvent-solute interface, geometric singularities and charge singularities leads to challenges in the numerical solution of the PB equation and electrostatic force evaluation in PB based MD methods. Recently, the matched interface and boundary (MIB) method has been utilized to develop the first second order accurate PB solver that is numerically stable in dealing with discontinuous dielectric coefficients, complex geometric singularities and singular source charges. The present work develops the PB based MD approach using the MIB method. New formulation of electrostatic forces is derived to allow the use of sharp molecular surfaces. Accurate reaction field forces are obtained by directly differentiating the electrostatic potential. Dielectric boundary forces are evaluated at the solvent-solute interface using an accurate Cartesian-grid surface integration method. The electrostatic forces located at reentrant surfaces are appropriately assigned to related atoms. Extensive numerical tests are carried out to validate the accuracy and stability of the present electrostatic force calculation. The new PB based MD method is implemented in conjunction with the AMBER package. MIB based MD simulations of biomolecules are demonstrated via a few example systems.  相似文献   

7.
This study derives geometric, variational discretization of continuum theories arising in fluid dynamics, magnetohydrodynamics (MHD), and the dynamics of complex fluids. A central role in these discretizations is played by the geometric formulation of fluid dynamics, which views solutions to the governing equations for perfect fluid flow as geodesics on the group of volume-preserving diffeomorphisms of the fluid domain. Inspired by this framework, we construct a finite-dimensional approximation to the diffeomorphism group and its Lie algebra, thereby permitting a variational temporal discretization of geodesics on the spatially discretized diffeomorphism group. The extension to MHD and complex fluid flow is then made through an appeal to the theory of Euler-Poincaré systems with advection, which provides a generalization of the variational formulation of ideal fluid flow to fluids with one or more advected parameters. Upon deriving a family of structured integrators for these systems, we test their performance via a numerical implementation of the update schemes on a cartesian grid. Among the hallmarks of these new numerical methods are exact preservation of momenta arising from symmetries, automatic satisfaction of solenoidal constraints on vector fields, good long-term energy behavior, robustness with respect to the spatial and temporal resolution of the discretization, and applicability to irregular meshes.  相似文献   

8.
Two-phase electrohydrodynamic simulations using a volume-of-fluid approach   总被引:1,自引:0,他引:1  
A numerical methodology to simulate two-phase electrohydrodynamic flows under the volume-of-fluid paradigm is proposed. The electric force in such systems acts only at the interface and is zero elsewhere in the two fluids. Continuum surface force representations are derived for the electric field force in a system of dielectric–dielectric and conducting–conducting fluids. On the basis of analytical calculations for simple flow problems we propose a weighted harmonic mean interpolation scheme to smoothen the electric properties in the diffused transition region (interface). It is shown that a wrong choice of interpolation scheme (weighted arithmetic mean) may lead to a transition region thickness dependent electric field in the bulk. We simulate a set of problems with exact or approximate analytical solutions to validate the numerical model proposed. A coupled level set and volume-of-fluid (CLSVOF) algorithm has been used for simulations presented here.  相似文献   

9.
A numerical methodology to simulate two-phase electrohydrodynamic flows under the volume-of-fluid paradigm is proposed. The electric force in such systems acts only at the interface and is zero elsewhere in the two fluids. Continuum surface force representations are derived for the electric field force in a system of dielectric–dielectric and conducting–conducting fluids. On the basis of analytical calculations for simple flow problems we propose a weighted harmonic mean interpolation scheme to smoothen the electric properties in the diffused transition region (interface). It is shown that a wrong choice of interpolation scheme (weighted arithmetic mean) may lead to a transition region thickness dependent electric field in the bulk. We simulate a set of problems with exact or approximate analytical solutions to validate the numerical model proposed. A coupled level set and volume-of-fluid (CLSVOF) algorithm has been used for simulations presented here.  相似文献   

10.
A new equation of state is developed that accurately describes the isotropic phase behaviour of linear, partially flexible and fully flexible tangent hard-sphere chain fluids and their mixtures. The equation of state is based on the equation of state of Liu and Hu [H. Liu and Y. Hu, Fluid Phase Equilibr. 122, 75 (1996)] for fully flexible chain fluids. The effect of molecular flexibility is described by a pure-component parameter that is introduced in the theory at the level of the cavity correlation function of next-to-nearest neighbour segments in a chain molecule. The equation of state contains a total of three adjustable model constants. The extension to partially flexible- and linear chain fluids is based on a refitting of the first model constant to numerical data of the second virial coefficient of partially flexible and linear tangent hard-sphere chain fluids. The numerical data were obtained from an analytical approximation for the pair-excluded volume. The other two parameters were adjusted to molecular simulation data for the pressure of linear tangent hard-sphere chain fluids. For both, pure component systems and mixtures of chains of variable flexibility, the pressure and second virial coefficient obtained from the equation of state, are in excellent agreement with the results from Monte Carlo simulations. A significant improvement to TPT1, TPT2, generalised Flory-dimer theory and scaled particle theory is observed.  相似文献   

11.
We present a new algorithm for the evaluation of the quasi-periodic Green function for a linear array of acoustic point sources such as those arising in the analysis of line array loudspeakers. A variety of classical algorithms (based on spatial and spectral representations, Ewald transformation, etc.) have been implemented in the past to evaluate these acoustic fields. However as we show, these methods become unstable and/or impractically expensive as the frequency of use of the sources increases. Here we introduce a new numerical scheme that overcomes some of these limitations allowing for simulations at unprecedentedly large frequencies. The method is based on a new integral representation derived from the classic spatial form, and on suitable further manipulations of the relevant integrands to render the integrals amenable to efficient and accurate approximations through standard quadrature formulas. We include a variety of numerical results that demonstrate that our algorithm compares favorably with several classical methods both for points close to the line where the poles are located and at high-frequencies while remaining competitive with them in every other instance.  相似文献   

12.
In this paper, an approach to predict the sound absorption coefficient and sound transmission loss of a parallel assembly of hollow cylinders is presented. This approach is based on image processing and the Parallel Transfer Matrix Method (PTMM) using four Johnson–Champoux–Allard effective fluids. First, effective parameters of each fluid are identified using geometrical considerations and numerical simulations. Then, the approach is validated for a stack of uniform plastic straws, and used to model a natural stack of non-uniform switchgrass straws. Finally, two parametric studies are conducted to evaluate the effects of the geometric parameters of the straws on the acoustic behavior of their stack. It is shown that there are optimal parameters that maximize the acoustic behavior at specific frequencies.  相似文献   

13.
冯晓明  程敏熙 《大学物理》2021,40(3):25-28,37
在解决相对论中关于参考系变换的问题时往往需要复杂冗长的计算,常用二惯性系映射法将计算问题转化为几何问题,该法快速而直观,但初学者较难掌握.为体现洛伦兹变换的动态过程以及传递物理学在变化中追求不变性的价值观,本文提出新的几何化方法即双曲旋转法.该法在二惯性系映射法的基础上以时空间隔不变性为依据进行双曲旋转,并辅以因果关系的制约确定最终的几何化结果.以一道题目为例详细说明了两种几何化方法的应用.  相似文献   

14.
This paper presents three-dimensional free vibration analysis of isotropic rectangular plates with any thicknesses and arbitrary boundary conditions using the B-spline Ritz method based on the theory of elasticity. The proposed method is formulated by the Ritz procedure with a triplicate series of B-spline functions as amplitude displacement components. The geometric boundary conditions are numerically satisfied by the method of artificial spring. To demonstrate the convergence and accuracy of the present method, several examples with various boundary conditions are solved, and the results are compared with other published solutions by exact and other numerical methods based on the theory of elasticity and various plate theories. Rapid, stable convergences as well as high accuracy are obtained by the present method. The effects of geometric parameters on the vibrational behavior of cantilevered rectangular plates are also investigated. The results reported here may serve as benchmark data for finite element solutions and future developments in numerical methods.  相似文献   

15.
《Current Applied Physics》2014,14(9):1263-1272
We present a robust and accurate numerical algorithm for calculating energy-minimizing wavelengths of equilibrium states for diblock copolymers. The phase-field model for diblock copolymers is based on the nonlocal Cahn–Hilliard equation. The model consists of local and nonlocal terms associated with short- and long-range interactions, respectively. To solve the phase-field model efficiently and accurately, we use a linearly stabilized splitting-type scheme with a semi-implicit Fourier spectral method. To find energy-minimizing wavelengths of equilibrium states, we take two approaches. One is to obtain an equilibrium state from a long time simulation of the time-dependent partial differential equation with varying periodicity and choosing the energy-minimizing wavelength. The other is to directly solve the ordinary differential equation for the steady state. The results from these two methods are identical, which confirms the accuracy of the proposed algorithm. We also propose a simple and powerful formula: h = L1/m, where h is the space grid size, L1 is the energy-minimizing wavelength, and m is the number of the numerical grid steps in one period of a wave. Two- and three-dimensional numerical results are presented validating the usefulness of the formula without trial and error or ad hoc processes.  相似文献   

16.
This paper deals with the application of a moving mesh method for kinetic/hydrodynamic coupling model in two dimensions. With some criteria, the domain is dynamically decomposed into three parts: kinetic regions where fluids are far from equilibrium, hydrodynamic regions where fluids are near thermodynamical equilibrium and buffer regions which are used as a smooth transition. The Boltzmann-BGK equation is solved in kinetic regions, while Euler equations in hydrodynamic regions and both equations in buffer regions. By a well defined monitor function, our moving mesh method smoothly concentrate the mesh grids to the regions containing rapid variation of the solutions. In each moving mesh step, the solutions are conservatively updated to the new mesh and the cut-off function is rebuilt first to consist with the region decomposition after the mesh motion. In such a framework, the evolution of the hybrid model and the moving mesh procedure can be implemented independently, therefore keep the advantages of both approaches. Numerical examples are presented to demonstrate the efficiency of the method.  相似文献   

17.
A second-order closure is developed for predicting turbulent flows of viscoelastic fluids described by a modified generalised Newtonian fluid model incorporating a nonlinear viscosity that depends on a strain-hardening Trouton ratio as a means to handle some of the effects of viscoelasticity upon turbulent flows. Its performance is assessed by comparing its predictions for fully developed turbulent pipe flow with experimental data for four different dilute polymeric solutions and also with two sets of direct numerical simulation data for fluids theoretically described by the finitely extensible nonlinear elastic – Peterlin model. The model is based on a Newtonian Reynolds stress closure to predict Newtonian fluid flows, which incorporates low Reynolds number damping functions to properly deal with wall effects and to provide the capability to handle fluid viscoelasticity more effectively. This new turbulence model was able to capture well the drag reduction of various viscoelastic fluids over a wide range of Reynolds numbers and performed better than previously developed models for the same type of constitutive equation, even if the streamwise and wall-normal turbulence intensities were underpredicted.  相似文献   

18.
Flamelet models, which enable the storing of precomputed detailed chemistry into lookup tables, are widely used in combustion simulations. They allow the computation of accurate results at low computational cost, but standard implementations can lead to numerical problems due to a non-smooth representation, and their applicability is limited by memory requirements. Here, the methods used by a newly developed and optimised lookup table generator based on B-spline interpolation are presented. The creation of smooth representations of flamelet solutions requiring less than one fifth of the number of points in each direction compared to the non-smooth representations of standard lookup tables based on linear interpolation is shown to be possible. The new B-spline interpolation based tables are also applied within a large-eddy simulation of the Swirling Methane/Hydrogen Flame 1 and the results are compared to simulations using lookup tables based on linear interpolation or optimised artificial neural networks. Better performance of the B-spline interpolation based tables with respect to physical accuracy and numerical performance is demonstrated.  相似文献   

19.
界面声反射模拟是室内复杂声学现象仿真的关键。针对传统声学仿真方法对于周期散射结构存在条件下声场仿真精度较低的问题,本文发展了一种基于迭代散射模型的室内相干声线跟踪法。此方法以经典的相干声线跟踪法为基础,将室内中常见的周期散射结构进行几何形状上的简化处理,然后依据周期散射定理给出声波在界面上的散射方向及能量,并将原始声线迭代分裂为相应的散射子声线,继续对其跟踪处理,此迭代散射模型对周期散射结构上的界面散射现象进行了准确的模拟。数值验证结果表明,本文方法可以有效地在低频段提高室内声场仿真精度,可为具有复杂散射现象的室内仿真提供新思路。  相似文献   

20.
张帅  李天匀  朱翔  戴维 《声学学报》2022,47(4):481-494
针对水下近水面锥柱组合壳声固耦合多借助于数值方法求解的现状,本文提出一种半解析方法从机理上分析此类问题。首先基于能量泛函和Sanders壳体理论、虚拟弹簧法以及力与力矩平衡条件建立锥柱组合壳的结构模型;然后采用Legendre谱元法和二维傅里叶变换得到含自由液面的水下声场模型;最后由非线性迭代法和高斯积分求解耦合系统声振控制方程。通过与参考文献和数值方法结果的对比,验证了本文方法的收敛性、正确性和可靠性。研究结果表明,结构参数、浸没深度和激励频率与远场辐射声压密切相关。本文工作可推广到水下含内部结构的复杂旋转组合壳在不同结构边界及声边界下的声固耦合问题。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号