首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
For optimally doped Bi(2)Sr(2)CaCu(2)O(8+delta), scattering rates in the normal state are found to have a linear temperature dependence over most of the Fermi surface. In the immediate vicinity of the (pi, 0) point, the scattering rates are nearly constant in the normal state, consistent with models in which scattering at this point determines the c-axis transport. In the superconducting state, the scattering rates away from the nodal direction appear to level off and become temperature independent.  相似文献   

2.
We have measured the complex conductivity sigma of a Bi(2)Sr(2)CaCu(2)O(8+delta) thin film between 0.2 and 0.8 THz. We find sigma in the superconducting state to be well described as the sum of contributions from quasiparticles, condensate, and order parameter fluctuations which draw 30% of the spectral weight from the condensate. An analysis based on this decomposition yields a quasiparticle scattering rate on the order of k(B)T/Planck's over 2pi for temperatures below T(c).  相似文献   

3.
A topological superconductor (TSC) is characterized by the topologically protected gapless surface state that is essentially an Andreev bound state consisting of Majorana fermions. While a TSC has not yet been discovered, the doped topological insulator Cu(x)Bi(2)Se(3), which superconducts below ~3 K, has been predicted to possess a topological superconducting state. We report that the point-contact spectra on the cleaved surface of superconducting Cu(x)Bi(2)Se(3) present a zero-bias conductance peak (ZBCP) which signifies unconventional superconductivity. Theoretical considerations of all possible superconducting states help us conclude that this ZBCP is due to Majorana fermions and gives evidence for a topological superconductivity in Cu(x)Bi(2)Se(3). In addition, we found an unusual pseudogap that develops below ~20 K and coexists with the topological superconducting state.  相似文献   

4.
We use angle-resolved photoemission spectroscopy to investigate the energy gap(s) in (Bi,Pb)2(Sr,La)2CuO6+delta. We find that the spectral gap has two components in the superconducting state: a superconducting gap and pseudogap. Differences in their momentum and temperature dependence suggest that they represent two separate energy scales. Spectra near the node reveal a sharp peak with a small gap below T(c) that closes at T(c). Near the antinode, spectra are broad with a large energy gap of approximately 40 meV above and below T(c). The latter spectral shape and gap magnitude are almost constant across T(c), indicating that the pseudogap state coexists with the superconducting state below T(c), and it dominates spectra around the antinode. We speculate that the pseudogap state competes with the superconductivity by diminishing spectral weight in antinodal regions, where the superconducting gap is largest.  相似文献   

5.
Angle-resolved photoemission spectroscopy is used to study the mass renormalization of the charge carriers in the high-T(c) superconductor (Pb,Bi)2Sr2CaCu2O8 in the vicinity of the (pi,0) point in the superconducting and the normal states. Using matrix element effects at different photon energies and due to a high momentum and energy resolution the bonding and the antibonding bands could be separated in the whole dopant range. A huge coupling to a bosonic collective mode is observed below T(c) for both bands, in particular, for the underdoped case. Above T(c), a weaker coupling to a continuous spectrum of modes is detected.  相似文献   

6.
Angle-resolved photoemission data in the superconducting state of Bi2Sr2CaCu2O8+delta show a kink in the dispersion along the zone diagonal, which is related via a Kramers-Kr?nig analysis to a drop in the low energy scattering rate. As one moves towards (pi,0), this kink evolves into a spectral dip. The occurrence of these anomalies in the dispersion and line shape throughout the zone indicates the presence of a new energy scale in the superconducting state.  相似文献   

7.
Motivated by neutron scattering data, we develop a model of electrons interacting with a magnetic resonance and use it to analyze angle resolved photoemission and tunneling data in the superconducting state of Bi(2)Sr(2)CaCu(2)O(8+delta). We not only can explain the peak-dip-hump structure observed near the (pi,0) point, and its particle-hole asymmetry as seen in superconductor-insulator-normal tunneling spectra, but also its evolution throughout the Brillouin zone, including a velocity "kink" near the d-wave node.  相似文献   

8.
The electronic structure of heavily overdoped Bi(2)Sr(2)CaCu(2)O(8+delta) is investigated by angle-resolved photoemission spectroscopy. The long-sought bilayer band splitting in this two-plane system is observed in both normal and superconducting states, which qualitatively agrees with the bilayer Hubbard model calculations. The maximum bilayer energy splitting is about 88 meV for the normal state feature, while it is only about 20 meV for the superconducting peak.  相似文献   

9.
The autocorrelation of angle resolved photoemission data from the high temperature superconductor Bi(2)Sr(2)CaCu(2)O(8+delta) shows distinct peaks in momentum space which disperse with binding energy in the superconducting state, but not in the pseudogap phase. Although it is tempting to attribute a nondispersive behavior in momentum space to charge ordering, a deconstruction of the autocorrelation reveals that the nondispersive peaks arise from the tips of the Fermi arcs, which themselves do not change with binding energy.  相似文献   

10.
We report a systematic high-resolution angle-resolved photoemission spectroscopy on high-T(c) superconductors Bi(2)Sr(2)Ca(n-1)Cu(n)O(2n+4) (n=1-3) to study the origin of many-body interactions responsible for superconductivity. For n=2 and 3, a sudden change in the energy dispersion, so called "kink", becomes pronounced on approaching (pi,0) in the superconducting state, while a kink appears only around the nodal direction in the normal state. For n=1, the kink shows no significant temperature dependence even across T(c). This could suggest that the coupling of electrons with Q=(pi,pi) magnetic mode is dominant in the superconducting state for multilayered cuprates, while the interactions at the normal state and that of single-layered cuprates have a different origin.  相似文献   

11.
The low-energy electronic structure of the nearly optimally doped trilayer cuprate superconductor Bi(2)Sr(2)Ca(2)Cu(3)O(10+delta) is investigated by angle-resolved photoemission spectroscopy. The normal state quasiparticle dispersion and Fermi surface and the superconducting d-wave gap and coherence peak are observed and compared with those of single- and bilayer systems. We find that both the superconducting gap magnitude and the relative coherence-peak intensity scale linearly with T(c) for various optimally doped materials.  相似文献   

12.
The doping dependence of nanoscale electronic structure in superconducting Bi(2)Sr(2)CaCu(2)O(8 + delta) is studied by scanning tunneling microscopy. At all dopings, the low energy density-of-states modulations are analyzed according to a simple model of quasiparticle interference and found to be consistent with Fermi-arc superconductivity. The superconducting coherence peaks, ubiquitous in near-optimal tunneling spectra, are destroyed with strong underdoping and a new spectral type appears. Exclusively in regions exhibiting this new spectrum, we find local "checkerboard" charge ordering of high energy states, with a wave vector of Q = (+/- 2pi/4.5a(0),0); (0, +/- 2pi/4.5a(0)) +/- 15%. Surprisingly, this spatial ordering of high energy states coexists harmoniously with the low energy Bogoliubov quasiparticle states.  相似文献   

13.
We have performed ultrahigh-resolution angle-resolved photoemission spectroscopy of (Bi,Pb)2Sr2CuO6 by using a newly developed xenon-plasma light source to clarify the origin of the pseudogap (PG). We determined the comprehensive momentum and temperature dependences of the superconducting (SC) gap and the PG, and revealed a smooth evolution of the PG from the SC gap. We also found a linear scaling behavior of the characteristic PG temperature with the SC gap size regardless of the momentum location. These experimental results strongly suggest that the observed PG is caused by the precursor pairing.  相似文献   

14.
Results from the study of a highly overdoped (OD) Bi(2)Sr(2)CaCu(2)O(8+delta) with a T(c) = 51 K using angle-resolved photoemission spectroscopy are presented. We observe a sharp peak in the spectra near ( pi,0) that persists well above T(c), a nodal self-energy which approaches that seen for the Mo(110) surface state, and a more k-independent line shape at the Fermi surface than the lower-doped cuprates. This allows for a realistic comparison of the lifetime values to the experimental resistivity measurements. These observations point to the validity of the quasiparticle picture for the OD even in the normal state.  相似文献   

15.
From detailed high-resolution measurements of the photon energy dependence of the (pi,0) superconducting-state photoemission spectrum of the bilayer Bi high-temperature superconductors, we show that the famous peak-dip-hump line shape is dominated by a superposition of spectral features originating from different electronic states which reside at different binding energies, but are each describable by essentially identical single-particle spectral functions. The previously identified bilayer-split CuO2 bands are the culprit: with the "superconducting" peak being due to the antibonding band, while the hump is mainly formed by its bonding bilayer-split counterpart.  相似文献   

16.
We performed high-resolution angle-resolved photoemission spectroscopy on triple-layered high-T(c) cuprate Bi(2)Sr(2)Ca(2)Cu(3)O(10+delta). We have observed the full energy dispersion (electron and hole branches) of Bogoliubov quasiparticles and determined the coherence factors above and below E(F) as a function of momentum from the spectral intensity as well as from the energy dispersion based on BCS theory. The good quantitative agreement between the experiment and the theoretical prediction suggests the basic validity of BCS formalism in describing the superconducting state of cuprates.  相似文献   

17.
We study the Fermi surface of Bi2Sr2CaCu2O8 using angle resolved photoemission spectroscopy (ARPES) with a momentum resolution of approximately 0.01 of the Brillouin zone. We show that, contrary to recent suggestions, the ARPES derived Fermi surface is a large hole barrel centered at (pi,pi), independent of the incident photon energy. We caution that the photon energy and k dependence of the matrix elements, if not properly accounted for, can lead to misinterpretation of ARPES intensities.  相似文献   

18.
We present high resolution angle resolved photoemission data of the bilayer superconductor Bi(2)Sr(2)CaCu(2)O(8+delta) (Bi2212) showing a clear doubling of the near E(F) bands. This splitting approaches zero along the (0,0)-->(pi,pi) nodal line and is not observed in single layer Bi(2)Sr(2)CuO(6+delta) (Bi2201), indicating that the splitting is due to the long sought after bilayer splitting effect. The splitting has a magnitude of approximately 75 meV near the middle of the zone, extrapolating to about 110 meV near the (pi,0) point. The existence of these two bands also helps to clear up the recent controversy concerning the topology of the Fermi surface.  相似文献   

19.
We study staggered flux fluctuations around the superconducting state of the SU(2) mean-field theory for the two-dimensional t-J model and their effect on the electron spectral function. The quasiparticle peaks near (pi,0),(0,pi) get strongly broadened and partially wiped out by these fluctuations while the quasiparticle peaks near the nodes of the d-wave gap are preserved over a wide parameter range. The strength of these effects is governed by an energy scale that decreases towards zero for doping x-->0 and that is related to the energy splitting between the SU(2)-related superconducting and staggered flux mean-field states.  相似文献   

20.
We have measured intrinsic-tunneling spectra of a single CuO-layer La-doped Bi2(Sr(2-x)Lax)CuO(6+delta) (Bi2201-Lax). Despite a difference of a factor of 3 in the optimal superconducting critical temperatures for Bi2201-La0.4 and Bi2212 (32 and 95 K, respectively) and different spectral energy scales, we find that the pseudogap vanishes at a similar characteristic temperature T* approximately 230-300 K for both compounds. We find also that, in Bi2201-Lax, pseudogap humps are seen as sharp peaks and, in fact, even dominate the intrinsic spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号