首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
In the present work, super-hydrophobic surfaces based on porous silicon (PS) were constructed by the self-assembled molecular films and their tribological properties were investigated. A simple chemical etching approach was developed to fabricate PS with the certain rough microstructure surface, which can be observed by the environmental scanning electron microscopy (ESEM). The hydrocarbon and fluorocarbon alkylsilane molecular films were self-assembled on PS, which was confirmed by the X-ray photoelectron spectroscopy (XPS) measurement. In contrast to PS, the alkylsilane molecular films modified PS (mPS) were super-hydrophobic since the apparent water contact angle (CA) exceeded 160°. The tribological properties of PS and the mPS were investigated by a ball-on-disk tribometer during the processes of different sliding velocities and normal loads. The experimental results showed that the alkylsilane molecular films could decrease the friction coefficient. Due to the difference of chain structure and functional groups, the fluorinated alkylsilane films are better candidates for improving the hydrophobicity and lubricating characteristics of PS comparing to the non-fluorinated ones. The carbon chain length of alkylsilane molecules self-assembling on the Si or PS substrates could have little effects on the hydrophobic properties and the tribology performances.  相似文献   

2.
By means of scanning electron microscopy and computer simulation, we have investigated the microstructures of a 23-μm-thick porous silicon (PS) film and a 6-μm-thick PS film. The two films give off strong visible emissions when excited by the 254 nm light. For the 23-μm-thick PS film, both of its cross-sectional and top-surface morphologies exhibit self-similarity whose small-scale and large-scale microstructures resemble one another. For the 6-μm-thick PS film, self-similar cracks are developed on its top surface. Our results have demonstrated that the microstructures of PS films exhibit the characteristics of fractals. With box counting method, the fractal dimensions of the PS films are calculated to be about 2.3-2.6. Based on the model of diffusion-limited aggregation, the fractal growth processes have been simulated for the PS films.  相似文献   

3.
Photosensitive TiO2/organically modified silane organic–inorganic hybrid thin films were synthesized by combining a low-temperature sol–gel process with a spin-coating method. Optical transmittance properties and the photochemical activities of the planar hybrid films were characterized by UV–Visible spectroscopy and Fourier transform infrared spectroscopy. Advantages for fabrication of the concave micro-lens arrays (MLAs) based on the photosensitive hybrid films were demonstrated by using the replicated polydimethylsiloxane (PDMS) soft mold as the imprint mold and a UV soft imprint technique. Morphological and surface profile properties of the master, the PDMS soft molds and the as-fabricated sol–gel concave MLAs were observed by scanning electron microscopy and laser confocal scanning microscopy. Contact angles of water on the PDMS soft molds baked at different temperatures were studied. Optical imaging properties of the as-fabricated concave MLAs were confirmed by a self-made optical test system. Results indicate that the as-prepared photo-patternable hybrid materials have great applicability for the fabrication of photonic components, thus providing an effective method to fabricate concave MLAs based on the as-synthesized hybrid films by combining the UV-cured imprint technique with the replicated PDMS soft mold, which has advantages of simplicity, cost-effective and mass production and potential application in industry production.  相似文献   

4.
Electrochemical deposition method was employed to fabricate ZnO nanorods on zinc foil substrate in this paper. The structural observations of ZnO nanorods with different aspect ratios were carried out by field-emission scanning electron microscopy. The microstructures of ZnO nanorods were also characterized by X-ray diffraction and the changes in surface hydroxyls with electrochemical deposition time were analyzed by X-ray photoelectron spectroscopy. The study results show the aspect ratios of ZnO nanorods and the density of their surface hydroxyls are responsible for their superhydrophobicity. The fluorinated polymer coated ZnO nanorods showed an excellent superhydrophobic behavior with 167° contact angle of water droplet, which is larger than that of fluorinated polymer flat surface. The more the surface hydroxyls are, the more hydrophilic the surfaces are. Meanwhile, the larger the aspect ratio of ZnO nanorod arrays is, the larger its drophobicity is. The results of this study might pave a simple and feasibility pathway to the fabrication of superhydrophobic cleaning materials used in engineering fields.  相似文献   

5.
A novel approach was developed to fabricate a lotus-leaf-like superhydrophobic surface on a copper foil by simple self-assembly method with the assistance of the porous PDMS template which was used to adjust the oxidized parts of the copper foil surface before self-assembly. The results showed a series of beautiful flower-like microstructures resulting from the self-assembly of cupric stearate that were distributed at regular intervals on the as-prepared copper foil surface similar to the papillae of lotus leaf surface. The water contact angle of the as-prepared copper surface was up to 161° and its sliding angle was only 3°. Its great superhydrophobicity could be kept unchanged after 6 months in air. The formation mechanism of the lotus-leaf-like structure was discussed. This simple and low-cost method is expected to be applied to design and prepare complicated superhydrophobic surfaces with beautiful regular microstructures on different substrates such as stainless steel, zinc, and so on.  相似文献   

6.
Styrene and 2,2,3,4,4,4-hexafluorobutyl methacrylate copolymers were synthesized by bulk polymerization, and the superhydrophobic copolymer films were prepared subsequently using phase separation technique. The copolymer was dissolved in tetrahydrofuran, and then added ethanol into the solution thereafter, to induce phase separation. The microstructures of the polymer films were controlled by the degree of phase separation, which was enhanced properly by the concentration of ethanol. The surface morphology of the films, observed by environmental scanning electron microscope, is similar to that of the lotus leaf. The contact angle and sliding angle were measured as 154.3° and 5.8°, respectively. The excellent superhydrophobic property demonstrated that the phase separation technique is useful for preparing lotus-like fluoropolymer films.  相似文献   

7.
Thin nanodotstructured metal films and heterostructured nanodot arrays (metal nanodot arrays/Si) with a high density and uniform distribution for various kinds of metals (Au, Al, Ag, Pb, Cu, Sn, and Zn) were fabricated by thermal vacuum evaporation using an anodic porous alumina membrane as a template. However, for such metals as Sn, Zn, and Pb with relatively lower melting point as compared with Al it was found that heterostructured nanodot arrays were not formed by a single stage of evaporation. For these metals, we developed a new method termed “two step evaporation method”. The size and the arrays of dots were depended on the pore structure in the anodic porous alumina template. The technique demonstrated in this report is simple and suitable for the preparation of nanodot arrays in the large area for materials which could be vacuum evaporated.  相似文献   

8.
This paper presents a facile and effective method to fabricate microlens array in polydimethylsiloxane (PDMS). The microlens array model is fabricated in photoresist via digital maskless grayscale lithography technique and the replica molding technique is used to fabricate PDMS microlens array. A convex PDMS microlens array with rectangular aperture and concave PDMS microlens array with hexagonal aperture are fabricated. The morphological characteristics of the microlens arrays are measured by microscope and 3D profiler. The results indicate that the profiles of the PDMS microlens arrays are clear and distinct. This method provides a simple and low-cost approach to prepare large area, concave or convex with arbitrary shape microlens array, which has potential application in many optoelectronic devices.  相似文献   

9.
The flow field along the base of an evaporating ethanol-water droplet and its evolution time was measured by particle image velocimetry. Three stages are revealed, a first stage dominated by multiple vortices, a second transition stage characterized by a remarkable spike in outward flow not previously identified, and a third stage dominated by outward flow identical to that found for pure water. Stage I is thought to be driven by surface tension gradients arising from local concentration variation. The spike in outward flow is explained in terms of a transition corresponding to almost total depletion of ethanol. An exponential decay in vorticity during the transition stage is explained in terms of ethanol diffusion from the bulk to the interface. We speculate on the existence of a zero-concentration wave propagating from the apex to the contact line corresponding to the final total depletion of ethanol.  相似文献   

10.
Nature-inspired fabrication of micro-structured superhydrophobic plastic film was aimed in this work in order to achieve smart materials with self-cleaning properties. Replicas of silicon masters were fabricated from different mixtures of base elements and by different processes. Corresponding microstructures were investigated by contact angle measurements, scanning electron microscopy and spectrophotometric analysis. Independently of the technology employed, the obtained films exhibited high contact angle value (larger than 150°), but while the acrylic polymers presented strong demoulding drawbacks, the polydimethylsiloxane (PDMS) films had good properties in terms of both contact angle and optical transparency. The results showed that most of the patterns realized by replica moulding and hot-embossing (on PDMS and polypropylene (PP), respectively) produced superhydrophobic self-cleaning surfaces.  相似文献   

11.
A method, combining micro-contact printing (μCP), wet chemical etching and reactive ion etching (RIE), is reported to fabricate microstructures on Si and SiOx. Positive and negative structures were generated based on different stamps used for μCP. The reproducibility of the obtained microstructures shows the methodology reported herein could be useful in Micro-Electro-Mechanical Systems (MEMS), optical and biological sensing applications.  相似文献   

12.
A templating method for fabricating two-dimensional (2D) arrays of micron-sized goM rings is reported. The microstructures are formed by electroless plating in a through-porous polymer membrane on a silicon substrate obtained from a closed-packed silica colloidal crystal. Our results show that the sizes of gold rings can be altered by varying electroless plating conditions for the porous polystyrene membranes. Moreover, we explain the growth mechanism of gold rings using the classical crystal growth theory that is preferential nucleation at reentrant sites.  相似文献   

13.
The sonoprocessing of droplet spreading during the wetting process of molten aluminum droplets on SiC ceramic substrates at 700 °C is investigated in this paper. When wetting is assisted by a 20 kHz frequency ultrasonic field, the wettability of liquid metal gets enhanced, which has been determined by the variations in thermodynamic energy and wetting kinetics. Wetting kinetic characteristics are divided into two stages according to pinning and depinning states of substrate/droplet contact lines. The droplet is static when the contact line is pinning, while it is forced to move when the contact line is depinning. When analyzing the pinning stage, high-speed photography reveals the evidence of oxide films being rapidly crushed outside the aluminum droplet. In this work, atomic models of spherical Al core being wrapped by alumina shell are tentatively built, whose dioxide microstructures are being transformed from face-centered cubic into liquid at the atomic scale. At the same time, the wetting experiment reveals that the oxide films show changes in the period of sonoprocessing from 3rd to 5th second.During the ultrasonic spreading behavior in the late stage, there is a trend of evident expansion of the base contact area. The entire ultrasonic process lasts for no longer than 10 s. With the aid of ultrasonic sinusoidal waves, the wettability of metal Al gets a rapid improvement. Both molecular dynamic (MD) investigations and the experiments results reveal that the precursor film phenomenon is never found unless wetting is assisted by ultrasonic treatments. However, the precursor film appears near the triple line after using ultrasonics in the droplet wetting process, whose formation is driven by ultrasonic oscillations. Due to the precursor film, the ultrasonic wetting contact angle is lower than the non-ultrasonic contact angle. In addition, the time-variant effective ultrasonic energy has been quantitatively evaluated. The numerical expressions of thermodynamic variables are well verified by former ultrasonic spreading test results, which altogether provide an intrinsic explanation of the fast-decreasing contact angle of Al/SiC.  相似文献   

14.
This paper describes a facile strategy for fabricating arrays of two- and three-dimensional gold nanostructures using PDMS-infiltrated polystyrene (PS) colloidal crystals. PDMS molding of colloidal crystal, gold vapor deposition, and subsequent calcination of PS produced gold thin layers over hexagonal PDMS microwell arrays with hemispherical air-voids of approximately 140 nm on glass substrates. Vapor deposition of perfluoroalkylsilane thin layers improved the thermal stability of the colloidal template over 100 °C, providing a route to preparation of hollow architectures with gold thin layers supported by PDMS nanostructures. Surface modification of the PDMS using poly(allylamine hydrochloride) induced two-dimensional colloidal crystals of PS and PMMA spheres through electrostatic interactions. Particle aggregation of 13 nm gold nanoparticles in the PDMS microwells demonstrated a surface plasmon resonance band red-shifted to 810 nm, in comparison with that on the flat surface at 720 nm.  相似文献   

15.
We studied the influence of the elastic modulus on the gecko-inspired dry adhesion by regulating the elastic modulus of bulk polyurethane combined with changing the size of microarrays. Segmented polyurethane (PU) was utilized to fabricate micro arrays by the porous polydimethyl siloxane (PDMS) membrane molding method. The properties of the micro arrays, such as the elastic modulus and adhesion, were investigated by Triboindenter. The study demonstrates that bulk surfaces show the highest elastic modulus, with similar values at around 175 MPa and decreasing the arrays radius causes a significant decrease in E, down to 0.62 MPa. The corresponding adhesion experiments show that decrease of the elastic modulus can enhance the adhesion which is consistent with the recent theoretical models.  相似文献   

16.
张文彬  廖龙光  于同旭  纪爱玲 《物理学报》2013,62(19):196102-196102
液体蒸发驱动的颗粒自组装现象在许多的工业技术中有重要应用. 本文利用显微镜观测含有颗粒物质的液滴变干后留在固体表面的颗粒形成的环状沉积图案. 采用微米粒径的SiO2小球水溶液液滴蒸发变干模拟咖啡环的形成过程, 结果发现液滴蒸发过程中接触线的钉扎是环状沉积的必要条件. 在液滴蒸发过程中颗粒随着补偿流不断的向液滴边缘移动, 聚集在接触线处形成环. 液滴蒸发变干后残留在液滴内部的颗粒数随颗粒质量分数的增加而增加, 可以达到单层的颗粒排列. 而玻璃衬底上的颗粒环在颗粒质量分数很小时, 形成单层排列, 且一排一排地生长. 蒸发过程中颗粒环由于液滴边缘的尺寸限制向液滴中心缓慢移动. 这会导致液滴中不同大小颗粒的分离. 关键词: 液滴 接触线 蒸发 颗粒  相似文献   

17.
接触角滞后现象的理论分析   总被引:21,自引:1,他引:20  
在本文的研究中,考虑表面粗糙的影响,通过引入附加“磨擦力”的概念,分别用力学方法和热力学方法导出固体表面上液滴平衡时接触角应满足的条件;并得到了液滴系统自由能-固液接触面积曲线;分析了前进接触角和后退接触角的物理意义;由此给出了接触角滞后现象的一种合理解释.这对于进一步认识接触角的滞后现象,无疑是有积极意义的.  相似文献   

18.
The results of study of evaporation of water droplets and NaCl salt solution from a solid substrate made of anodized aluminum are presented in this paper. The experiment provides the parameters describing the droplet profile: contact spot diameter, contact angle, and droplet height. The specific rate of evaporation was calculated from the experimental data. The water droplets or brine droplets with concentration up to 9.1 % demonstrate evaporation with the pinning mode for the contact line. When the salt concentration in the brine is taken up to 16.7 %, the droplet spreading mode was observed. Two stages of droplet evaporation are distinguished as a function of phase transition rate.  相似文献   

19.
Y. Zhou  X. Song  E. Li  G. Li  S. Zhao  H. Yan 《Applied Surface Science》2006,253(5):2690-2694
Control of wettability is of significance in industry as well as our daily live. Amorphous carbon (a-C) films with nanostructured surface were deposited on silicon and glass substrates at different substrate temperatures through a magnetron sputtering technique. The microstructures of the a-C films were studied by SEM and XPS, which indicate that the surface of the a-C films deposited at room temperature are smooth due to their much dense sp3-bonded carbon, while they turn to be more porous graphite-like structure with elevated deposition temperature. The water contact angle (CA) measurements show that these pure carbon films exhibit different wettability, ranging from hydrophilicity with CA less than 40° to super-hydrophobicity with CA of 152°, which reveal that the surface wettability of a-C films can be controlled well by using nanostructures with various geometrical and carbon state features. The graphite-like carbon film deposited at 400 °C without any modification exhibits super-hydrophobic properties, due to the combining microstructures of spheres with nanostructures of protuberances and interstitials. It may have great significance on the study of wettability and relevant applications.  相似文献   

20.
Water W  Chen SE  Meen TH  Ji LW 《Ultrasonics》2012,52(6):747-752
A ZnO guiding layer with nanorod arrays grown on a 90°-rotated ST-cut (42°45) quartz substrate was used to fabricate a Love wave fluid sensor. ZnO nanorod arrays synthesized on the guiding layer enhance the sensitivity of the flow rate. ZnO thin films were deposited by radio frequency magnetron sputtering and ZnO nanorod arrays were then synthesized on the thin films via the hydrothermal method. The crystalline structure and surface morphology of ZnO thin films and nanorod arrays were examined by X-ray diffraction and scanning electron microscopy. The effects of the thickness of ZnO thin film and the surface morphology of ZnO nanorod arrays on the sensitivity of flow rate were investigated. A linear response between flow rate and the return loss of the sensor with one-port resonator type can be obtained by adjusting the thickness of ZnO thin film and the length of nanorod arrays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号