首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
文中对R116跨临界热泵循环进行了理论分析,分别计算了压缩机最优排气压力和回热器对系统性能的影响。计算结果表明,系统存在最优排气压力,最优排气压力与制冷剂气冷器出口温度、蒸发温度以及过热度都有关系,利用多项式函数对最优排气压力进行了拟合,拟合的最大相对误差为-5.92%,平均相对偏差为1.77%;在蒸发温度-5℃、0℃、5℃,过热度5℃、10℃、15℃,气冷器出口温度25℃—70℃的情况下,分别对系统回热循环性能进行了分析计算,结果表明回热循环性能较无回热循环有大幅的改善,改善幅度介于12—95%之间。文中结果可以为R116跨临界热泵系统的设计和控制提供理论参考。  相似文献   

2.
为进一步研究跨临界CO_2热泵的系统性能,针对所设计CO_2热泵系统进行实验。实验结果表明:在风机频率一定时,系统热负荷、压缩机轴功率、系统出风温度均随压缩机频率的增大而增大。蒸发温度从-2℃升至4℃,COP增幅为26%,CO_2在气冷器出口温度降低10℃左右时,系统COP增幅大于30%。实验工况下跨临界CO_2热泵系统出风温度变化范围在50℃-100℃,在获得大于75℃出风温度时,热力学第二定律效率超过30%,CO_2气冷器出口温度、高压侧压力、蒸发温度的升高都会提高系统热力学第二定律效率。  相似文献   

3.
优化控制跨临界循环高压,是保证系统高效、稳定运行的关键。文中以HFC125为模拟工质,通过一个基本跨临界循环,得到了不同工况下各个循环参数与高温热泵跨临界循环高压之间的关系。根据结果发现,在一定工况下,高温热泵系统存在一个最优循环压力,最优循环压力主要受蒸发温度、冷凝器出口温度、过冷度和压缩机性能的影响。应调节此临界循环尽可能在最优压力附近工作。  相似文献   

4.
CO_2/二甲醚混合制冷剂跨临界制冷循环性能分析   总被引:1,自引:0,他引:1  
本文通过理论计算对CO_2/DME混合制冷剂替代CO_2的跨临界制冷循环特性进行了分析,结果表明:CO_2/DME混合制冷剂的质量配比范围为90/10~100/0时,可实现混合制冷剂的直接充灌.在相同的工况下,CO_2/DME跨临界制冷循环的最优高压侧压力降低了3 MPa,制冷系数提高4.3%;过热度对循环性能的影响,纯质CO_2要大于混合工质CO_2/DME.  相似文献   

5.
对带和不带回热器(IHX)的跨临界二氧化碳两相引射制冷系统进行了实验研究,主要分析了回热器、实验工况、引射器尺寸参数对系统性能的影响。结果表明:对于固定的气冷器出口温度、不同的气冷器压力工况,回热器的使用可使系统制冷量提高0.85%-8.60%,COP提高0.88%-11.7%;对于固定的气冷器压力,在不同的气冷器出口温度条件下,其制冷量可提高1.14%-2.92%,COP可提高0.99%-2.75%;在气冷器压力较低及出口温度较高的工况条件下,回热器对系统性能影响较大,系统COP及制冷量的最大改善均发生在上述工况条件下;喷嘴直径与引射器混合室长度之间存在一个最优匹配,两者的最优匹配能使系统COP大大提高。  相似文献   

6.
为了研究跨临界CO2热泵空调系统在不同工况下的制热性能,应用MATLAB软件,对带回热器的跨临界CO2系统进行仿真研究。针对系统内排气压力Pcond、蒸发温度Tevp、气冷器排气温度Tout、过热度ΔT等因素,探究其对系统制热COP的影响。研究结果表明:Tevp、ΔT每升高1℃,系统COP分别上升5%~7%、0.1%~1.3%;Tout每增加1℃,系统COP降低0.17~0.04。通过仿真研究得出,跨临界CO2系统的最优排气压力Pcond_opt,并拟合得到其计算关联式。  相似文献   

7.
采用CO_2天然混合制冷剂的制冷系统热力学分析   总被引:1,自引:1,他引:0  
受工况条件的限制,CO2制冷系统在实际应用中往往需要采用跨临界循环,高压侧压力高达10MPa及以上。高的运行压力对系统各部件、设备的安全运行均提出更高要求,从而造成初投资增大。采用CO2混合工质,可以有效地改善纯的CO2系统存在的不足。针对三组CO2天然混合工质——R744/R290、R744/R600、R744/R600 a,在特定的工况条件下,对制冷系统进行了热力学理论分析和计算。探讨了混合工质中CO2不同质量配比、不同蒸发器出口制冷剂温度对系统制冷量、COP和冷凝压力的影响。结果表明:在相同工况下,R744/R290的冷凝压力比R744R/600高12~23%,比R744/R600 a高19~24%;R744/R290的COP值比R744/R600高33~41%,比R744/R600 a高25~32%。  相似文献   

8.
二氧化碳跨临界循环应用于热泵热水器具有供水温度高、能效高的优点,而最优高压控制是保证其高能效的关键之一。为了避免实际系统最优高压控制的复杂性,提出通过系统设计实现最优充注量近似不变的充注量不动点优化方法,可避免最优高压控制,在保证系统高能效运行的同时极大地简化了系统控制。仿真计算表明,通过调节换热器大小并在气体冷却器出口添加高压储罐,可以使不控高压系统的平均能效衰减减小至-0.8%。  相似文献   

9.
对引射器内部简化热力学模型进行了改进,建立了CO2两相流制冷系统的数学模型。利用MATLAB语言编写程序对该系统性能进行了模拟计算,分析了工况参数及引射比对引射循环系统性能的影响。模拟结果表明:CO2两相流引射循环制冷系统在较低的引射比条件下,就可以实现稳定运行,系统COP对气冷器出口温度的变化比较敏感,同时存在最优高压侧压力使系统COP达到最大;对于不同工况条件,CO2两相流引射循环制冷系统的COP比同工况条件下的传统系统的COP,理论上分别提高了11%~18%。  相似文献   

10.
环保工质CO_2作为制冷剂用于空调领域再次受到广泛关注。文中对CO_2跨临界循环进行了热力学理论分析,分析结果表明:循环系统存在最优高压压力,使得其COP达到最大值;蒸发温度的升高或者冷却压力的降低都能提高COP,但都会降低效率;实际运行系统中,应该尽可能提高蒸发温度或者降低气体冷却器的出口温度。  相似文献   

11.
二氧化碳跨临界循环带膨胀机热泵系统的实验研究   总被引:4,自引:2,他引:2  
虽然二氧化碳跨临界循环成为最具潜力的工质替代技术,但其循环节流损大,循环效率还是比常规工质循环低,因此研制高效率的二氧化碳跨临界循环系统是推动实际应用的关键问题。在文中给出了二氧化碳膨胀机的设计思路,同时对提高效率的两个措施、采用回热器和膨胀机进行实验的对比。通过实验表明,膨胀机的运行效率与膨胀机的转速有关,而且系统的运行也受到其影响。系统采用膨胀机的运行效率高于带回热器的系统效率,说明膨胀机起到节能的作用。  相似文献   

12.
本文实验研究了回热器的回热率对跨临界CO2热泵系统性能的影响。结果表明:在一定压缩机频率下,随着排气压力的升高,系统制热量和COPh都存在最大值,并分别存在对应最大制热量和最大COPh的最优排气压力;在25Hz压缩机频率下,系统在低排气压力下运行时,引入回热器才能提高系统COPh,且引入回热器可在较低排气压力下,获得更高的系统COPh;在一定压缩机频率下,系统分别存在最大制热量、最高出水温度和最大COPh对应的最优回热率.在本实验条件下,如果以系统获得最大COPh为设计目标,系统回热率取15%左右为宜;如果以系统获得最高出水温度为设计目标,系统回热率取5%左右为宜。  相似文献   

13.
CO_2跨临界(逆)循环的热力学分析   总被引:25,自引:1,他引:24  
1前言世界各国开展了寻求CFC和HCFC替代物的广泛研究。到目前这项研究已有了实质性的进展。主要提出了包括R134a在内的若干HFC及其混合物来替代R12,R502和R22等,并且已开始商业化生产。但人们已发现这些新工质并没有达到‘长期”替代物的要求,大部分HFC都有较高的温室效应和某些缺陷。随着世界范围制冷空调技术的应用和发展;对各种制冷工质的需求量逐年上升,每年达到数十万吨的消耗量,其中绝大部分将扩散到大气中去。这些物质的寿命或长或短,都会增加温室效应,或分解产生其它的副作用。人类大规模生产地球上本来不存在的气态…  相似文献   

14.
基于遗传算法混合工质热泵多参数优化   总被引:6,自引:0,他引:6  
本文将人工智能之一的遗传算法应用于混合工质热泵系统,在对热泵进行模拟的基础上构造了系统性能函数,对冷凝压力、蒸发压力以及回热度进行了多参数的优化,得到了使系统COP最大时的各参数的最佳值。发现在进行制冷/热系统多参数组合优化时,遗传算法全局寻优以及收敛能力与传统的优化方法相比,性能有了较大的提高。  相似文献   

15.
对土壤源跨临界CO2热泵供暖系统进行了实验研究。研究了热泵系统连续及间歇运行时温度的变化情况,以及膨胀阀开度对系统运行性能的影响。研究表明间歇运行有利于土壤温度的恢复,从而提高蒸发温度;压缩机功率、制热量、气体冷却器出水温度随着排气压力的升高而增大,但COPH的变化是非单调的,在一定的压力范围内出现最大值。  相似文献   

16.
In the waste heat recovery of the internal combustion engine (ICE), the transcritical CO2 power cycle still faces the high operation pressure and difficulty in condensation. To overcome these challenges, CO2 is mixed with organic fluids to form zeotropic mixtures. Thus, in this work, five organic fluids, namely R290, R600a, R600, R601a, and R601, are mixed with CO2. Mixture performance in the waste heat recovery of ICE is evaluated, based on two transcritical power cycles, namely the recuperative cycle and split cycle. The results show that the split cycle always has better performance than the recuperative cycle. Under design conditions, CO2/R290(0.3/0.7) has the best performance in the split cycle. The corresponding net work and cycle efficiency are respectively 21.05 kW and 20.44%. Furthermore, effects of key parameters such as turbine inlet temperature, turbine inlet pressure, and split ratio on the cycle performance are studied. With the increase of turbine inlet temperature, the net works of the recuperative cycle and split cycle firstly increase and then decrease. There exist peak values of net work in both cycles. Meanwhile, the net work of the split cycle firstly increases and then decreases with the increase of the split ratio. Thereafter, with the target of maximizing net work, these key parameters are optimized at different mass fractions of CO2. The optimization results show that CO2/R600 obtains the highest net work of 27.43 kW at the CO2 mass fraction 0.9 in the split cycle.  相似文献   

17.
针对现有空气源热泵冷热水机组高温环境运行效果差、效率低、排气温度过高导致停机等问题,设计一套基于准双级压缩循环理论,以R410A为制冷剂的中压补气型空气源热泵冷热水机组。在50℃极端环境温度下,采用中压补气技术,对系统的制冷性能进行实验研究。结果表明:(1)系统出水温度由10℃增至15℃时,制冷量增加77.28%,EER提高59.02%,系统的制冷量、功率和EER均随出水温度的升高而增加;(2)相较不补气模式,系统排气温度由111.9℃降至106.23℃,制冷量由14.14 kW增至16.05 kW,可有效降低排气温度,提升制冷量,能更好提高系统超高温制冷时的稳定性。  相似文献   

18.
针对当前国家大力推行清洁能源技术和煤改气政策的供暖现状,本文探索了一种双效斯特林燃气热泵系统。全文基于热声学观点对系统进行了理论研究,并采用SAGE程序对其进行数值模拟和优化设计。计算表明,当加热、供热和冷端温度分别为923 K、333 K和273 K时,系统可获得的泵热量为7000 W,COPh为1.79,系统(火用)效率可达到45.67%;但谐振活塞位移对温度、压力以及谐振电机机械阻尼等参数变化具有敏感性,该特点将会严重制约系统的高效运行。为了降低系统的敏感性,本文采用谐振电机耦合斯特林发动机和斯特林热泵,通过对谐振电机电功输入和输出的调控来保持电机活塞工作状态的稳定。结果表明,谐振电机对于实现斯特林发动机和斯特林热泵的高效耦合以及降低系统敏感性具有可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号