首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 614 毫秒
1.
Towards the development of a useful mechanism for hydrogen storage, we have studied the hydrogenation of single-walled carbon nanotubes with atomic hydrogen using core-level photoelectron spectroscopy and x-ray absorption spectroscopy. We find that atomic hydrogen creates C-H bonds with the carbon atoms in the nanotube walls, and such C-H bonds can be completely broken by heating to 600 degrees C. We demonstrate approximately 65 +/- 15 at % hydrogenation of carbon atoms in the single-walled carbon nanotubes, which is equivalent to 5.1 +/- 1.2 wt % hydrogen capacity. We also show that the hydrogenation is a reversible process.  相似文献   

2.
In the present work, the channels of single-walled carbon nanotubes were filled with melts of ZnCl2, CdCl2, and TbCl3 by a capillary method with subsequent slow cooling. The detailed study of electronic structure of filled nanotubes was performed using Raman, optical absorption, and X-ray photoelectron spectroscopy. The obtained data are in mutual agreement and it proves that the filling of carbon nanotube channels with all these salts leads to the charge transfer from nanotube walls to the incorporated compounds, thus acceptor doping of nanotubes takes place. It was found out that encapsulated terbium chloride has the largest influence on the electronic properties of carbon nanotubes.  相似文献   

3.
In present work, thulium chloride, gallium selenide, bismuth telluride, and silver were encapsulated into the channels of single-walled carbon nanotubes (SWCNTs). The structural properties of obtained nanostructures were studied by high-resolution transmission electron microscopy, and the modification of electronic properties of nanotubes as result of filling their channels with chosen substances was investigated by Raman spectroscopy and X-ray photoelectron spectroscopy. It was shown that the electronic properties of filled SWCNTs depend on the chemical nature of incorporated materials. The encapsulation of TmCl3 and GaSe into the carbon nanotube channels leads to acceptor doping of the SWCNTs, and this effect is more prominent for thulium chloride. The incorporation of bismuth telluride into the nanotube cavities does not result in any modification of their electronic properties. The filling of the nanotube channels with silver leads to donor doping of the single-walled carbon nanotubes.  相似文献   

4.
In this work we performed the filling of single-walled carbon nanotube channels with metallic silver and copper by means of two-step synthesis including imbuing with metal nitrate aqueous solution and further annealing. It has been shown that metal insertion into the nanotube cavities results in the Fermi level upshift and the charge transfer from metal to carbon atoms, thus donor doping of single-walled carbon nanotubes takes place. At the same time, encapsulated silver has a larger donor effect on the carbon nanotubes that has been proved by Raman spectroscopy and X-ray photoelectron spectroscopy.  相似文献   

5.
王磊  张忠强  张洪武 《物理学报》2008,57(11):7069-7077
在单壁碳纳米管电浸润现象原子模拟的基础上,对双壁碳纳米管的电浸润现象进行了计算机模拟.运用经典分子动力学方法结合一个宏观的电毛细管模型模拟了双壁碳纳米管在水银中的电浸润过程,对不同内管尺寸情况下的浸润现象作了研究和比较.计算结果表明双壁碳管和单壁碳管的电浸润过程存在很大的不同,双壁碳管的内管在电浸润过程中起到重要的作用:当改变双壁碳管中内管的尺寸时,浸润现象会产生很大的改变. 关键词: 双壁碳纳米管 电浸润 分子动力学  相似文献   

6.
Low-energy, dark excitonic states have recently been predicted to lie below the first bright (E11) exciton in semiconducting single-walled carbon nanotubes [Phys. Rev. Lett. 93, 157402 (2004)10.1103/PhysRevLett.93.157402]. Decay into such deep excitonic states is implicated as a mechanism which reduces photoluminescence quantum yields. In this study we report the first direct observation of deep excitons in SWNTs. Photoluminescence (PL) microscopy of suspended semiconducting single-walled carbon nanotubes (SWNTs) reveals weak emission satellites redshifted by approximately 38-45 and approximately 100-130 meV relative to the main E11 PL emission peaks. Similar satellites, redshifted by 95-145 meV depending on nanotube species, were also found in PL measurements of ensembles of SWNTs in water-surfactant dispersions. The relative intensities of these deep exciton emission features depend on the nanotube surroundings.  相似文献   

7.
A single-step method of filling the channels of single-walled carbon nanotubes with the melt of refractory GaSe is proposed and successfully implemented. The filled nanotubes are investigated by optical absorption spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. It is found that charge transfer from the nanotube walls to embedded GaSe accompanied by lowering of the Fermi level in nanotubes occurs in the obtained nanocomposite; i.e., acceptor doping of nanotubes takes place.  相似文献   

8.
The physisorption of molecular hydrogen in BC3 composite single-walled nanotube, investigated using density functional theory, was compared with single-walled carbon nanotube. Both external and internal adsorption sites of these two nanotubes have been studied with the hydrogen molecular axis oriented parallel to the nanotube wall. The calculated results show that: ([see full textsee full text]) the physisorption energies of a H2 molecule are larger for BC3(8,0) composite nanotube than for C(8,0) nanotube at all adsorption sites examined. ([see full textsee full text]) For these two nanotubes, the physisorption energies are larger for hydrogen bound inside the nanotubes than for adsorption outside the nanotubes. The different behavior between these two nanotubes is explained by the contour plots of electron density and charge-density difference of them. The present computations suggest that BC3 nanotube may be a better candidate for hydrogen storage than carbon nanotube.  相似文献   

9.
We report the first measurement of the structure of 4He atoms adsorbed on bundles of single-walled carbon nanotubes. Neutron diffraction techniques and nanotube samples closed at the end were used. At low coverage, 4He forms a 1D, single line lattice along the grooves between two nanotubes on the surface of the nanotube bundles. As coverage is increased, additional lines of 1D lattices form along the grooves. This is followed by an incommensurate, 2D monolayer covering the whole nanotube bundle surface. The lattice constants of these 1D and 2D systems are largely independent of filling once a single 1D line is formed. No occupation of the interstitial channels between nanotubes is observed in the present sample.  相似文献   

10.
陈伟  罗成林 《物理学报》2006,55(1):386-392
利用紧束缚势分子动力学模拟方法,研究了温度在2000—3500 K之间单壁碳纳米管端口结构的变化趋势.研究表明,温度对整个管端口结构起关键作用,计算表明温度在3000K和3500K下碳管两端口在15ps时间尺度内依次闭合,温度高易于使理想单壁碳管端口封闭,且端口封闭导致碳管系统能量的降低.由于Armchair型碳纳米管与相同半径的Zigzag型碳纳米管相比有相对低的应力能,导致Armchair型碳纳米管更易形成端口封闭的结构. 关键词: 碳纳米管 紧束缚势  相似文献   

11.
We report an experimental study of static charge distribution in individual single-walled carbon nanotubes grown on a Si+115 nm SiO2 substrate. From these experiments, we conclude that charges are distributed uniformly along the nanotubes. We demonstrate that electrostatic force microscopy can accurately measure the amount of charges per unit length. We found that this amount is diameter dependent and in the range of 1 electron per nanometer for a 2.5 nm nanotube at a potential of -3.5 V.  相似文献   

12.
In this paper, we report on Raman studies carried out on different carbon nanotube systems, namely single-walled and multi-walled carbon nanotubes and polymer/nanotube composites. We focus on different types of interactions which can take place in these materials. In single-walled nanotubes, the introduction of van der Waals interactions between tubes when arranged in bundles leads to an upshift of the radial breathing mode (RBM) ranging from 11 to 16 cm−1 depending on the size of the bundle. In multi-walled carbon nanotubes, similar interactions between concentric tubes permit to interpret the low frequency Raman modes. In composites, PMMA/nanotubes, an upshift of the RBM is also observed, explained by the dynamical strain applied by the polymer on the bundles, in response to the breathing vibration. In addition, surface enhanced Raman scattering experiments have demonstrated the occurrence of interfacial reactions between the nanotubes and the metallic support. This is put in evidence by the degradation of tubes, especially metallic ones, and reconstruction of C60-like molecules are in some cases observed.  相似文献   

13.
The relationship between the electric properties and the vacancy density in single-walled carbon nanotubes has been investigated from first principles as well as the dependence of the influencing range of a vacancy in the nanotube on the nanotube chirality.Compared with the long-range interaction of the vacancies in a single-walled carbon nanotube with non-zero chiral angle,a much shorter interaction was found between vacancies in a zigzag single-walled carbon nanotube.In this study,we investigated the bandstructure fluctuations caused by the nanotube strain,which depends on both the vacancy density and the tube chirality.These theoretical results provide new insight to understand the relationship between the local deformation of a defective single-walled carbon nanotube and its measurable electronic properties.  相似文献   

14.
It has been found that deposition g of cesium atoms on single-walled carbon nanotubes covered with potassium atoms not only drastically increases emission current but also considerably changes the shape of current-voltage characteristics of field electron emission, namely, the characteristics become nonlinear in Fowler-Nordheim coordinates. It has been assumed that this effect is associated with the fact that field electron emission in these layers comes from single-walled carbon nanotubes, which have p-type conductivity after potassium treatment, while deposition of cesium leads to the formation of p-n junctions near nanotube tips. Part of the applied voltage drops in p-n junction, thus causing a nonlinearity of current-voltage characteristics.  相似文献   

15.
A. K. Sood  S. Ghosh  Anindya Das 《Pramana》2005,65(4):571-579
The flow of various liquids and gases over single-walled carbon nanotube bundles induces an electrical signal (voltage/current) in the sample along the direction of the flow. The electrical response generated by the flow of liquids is found to be logarithmic in the flow speed over a wide range. In contrast, voltage generated by the flow of gas is quadratically dependent on the gas flow velocity. It was found that the underlying physics for the generation of electrical signals by liquids and gases are different. For the liquid, the Coulombic interaction between the ions in the liquid and the charge carriers in the nanotube plays a key role while electrical signal generation due to gas flow is due to an interplay of Bernoulli’s principle and Seebeck effect. Unlike the liquid case which is specific to the nanotubes, the gas flow effect can be seen for a variety of solids ranging from single and multi-walled carbon nanotubes, graphite and doped semiconductors.  相似文献   

16.
The channels of single-walled carbon nanotubes (SWNTs) are filled with metallic silver. The synthesized nanocomposites are studied by Raman spectroscopy and optical absorption spectroscopy, and these data indicate a substantial modification of the electronic structure of the nanotubes upon their filling. Moreover, X-ray photoelectron spectroscopy shows that the incorporation of the metal leads to a change in the work function of SWNTs due to the Fermi level upshift and to the transfer of an electron density from inserted nanoparticles to the nanotube walls. Thus, the filling of the channels with silver results in donor doping of the nanotubes.  相似文献   

17.
The motion and equilibrium distribution of water molecules adsorbed inside neutral and negatively charged singlewalled carbon nanotubes (SWNTs) have been studied using molecular dynamics simulations (MDSs) at room temperature based on CHARMM (Chemistry at HARvard Molecular Mechanics) potential parameters. We find that water molecules have a conspicuous electropism phenomenon and regular tubule patterns inside and outside the charged tube wall. The analyses of the motion behaviour of water molecules in the radial and axial directions show that by charging the SWNT, the adsorption efficiency is greatly enhanced, and the electric field produced by the charged SWNTs prevents water molecules from flowing out of the nanotube. However, water molecules can travel through the neutral SWNT in a fluctuating manner. This indicates that by electrically charging and uncharging the SWNTs, one can control the adsorption and transport behaviour of polar molecules in SWNTs for using as a stable storage medium or long transport channels. The transport velocity can be tailored by changing the charge on the SWNTs, which may have a further application as modulatable transport channels.  相似文献   

18.
采用分子动力学方法,分别模拟了完好的和含有缺陷的氮化硼纳米管的轴向压缩过程。原子间的相互作用采用Tersoff多体势函数来描述。结果表明,同尺寸的锯齿型氮化硼纳米管的临界轴向压缩强度高于扶手型氮化硼纳米管,这与碳纳米管的研究结果一致。发现纳米管的压缩强度,如临界轴向内力在低温下受温度影响明显,并且和应变率的大小有关。然而,应变率对纳米管的弹性变形没有影响。另外,还发现空位缺陷降低了纳米管的力学性能。与完好的纳米管相比,含有缺陷的纳米管轴向压缩强度对于温度的影响并不敏感。  相似文献   

19.
We investigated the interactions between two different geometrical configurations of single-walled carbon nanotubes and boron atoms using first-principle calculations within the framework of the density functional theory. With the aid of ab initio calculations, we introduced a new type of toxic gas sensor that can detect the presence of CO, NO and H2 molecules. We proved that the dopant concentration on the surface of the nanotube plays a crucial role in the sensitivity of this device. Furthermore, we showed that small concentrations of dopants can modify the transport and electronic properties of the single-walled carbon nanotube and can lend metallic properties to the nanotube. Band-gap narrowing occurs when the nanotube is doped with boron atoms. The emerged new energy level near the Fermi level upon boron doping clearly indicates the coupling between the p orbital of the boron atom and the large p bond of the carbon nanotube. We also predicted a weak hybridization between the boron atoms and the nanotube for the valence-band edge states; this weak coupling leads to conducting states around the band gap.  相似文献   

20.
In continuation of our research on carbon nanotube/P(VDF-TrFE) nano-composites [1], total x-ray fluorescence (TXRF) is engaged in a novel characterization of these materials regarding their compositions, purities, and structural analysis. Samples such as single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT), P(VDF-TrFE) copolymer, SWCNT/P(VDF-TrFE), and MWCNT/P(VDF-TrFE) were analyzed by TXRF. The synthetic quartz used as a substrate was analyzed as reference material for the TXRF measurements. The ethanol and the dimethylformamide (DMF) used as solvents for carbon nanotubes and copolymers respectively were also analyzed by TXRF to determine whether they have an influence or not on the TXRF of the previous material. The preliminary results showed that single-walled and multi-walled carbon nanotubes prepared by the arc-discharge method contain catalytic particles such as Fe, Co, and Ni used to obtain SWCNT while there were no metal or impurities in MWCNT. The TXRF spectrum of CNT/P(VDFTrFE) showed the same results as we found previously with background due to the P(VDF-TrFE) copolymer scattered signal. __________ Published in Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 5, pp. 700–702, September–October, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号