首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Up-conversion blue emissions of trivalent thulium ions in monoclinic KGd(WO4)2 single crystals at 454 and 479 nm are reported for a single pump laser source at 688 nm. We grew thulium-doped KGd(WO4)2 single crystals at several concentrations from 0.1% to 10%. We recorded a polarized optical absorption spectrum for the 3F2+3F3 energy levels of thulium at room temperature and low temperature (6 K). From the low temperature emission spectra we determined the splitting of the 3H6 ground state. The blue emissions are characterized as a function of the dopant concentration and temperature from 10 K to room temperature. To our knowledge, this is the first time that sequential two-photon excitation process (STEP) generated blue emissions in thulium-doped single crystals with a single excitation wavelength.  相似文献   

2.
The polarized absorption spectra, infrared fluorescence spectra, upconversion visible fluorescence spectra, and fluorescence decay curve of orientated Nd3+:KGd(WO4)2 crystal were measured at room-temperature. Some important spectroscopic parameters were investigated in detail in the framework of the Judd-Ofelt theory and the Fuchtbauer-Ladenburg formula. The effect of the crystal structure on the spectroscopic properties of the Nd3+ ions was analyzed. The relation among the spectroscopic parameters and the laser performances of the Nd3+:KGd(WO4)2 crystal was discussed.  相似文献   

3.
Raman spectra of as-grown and vapor transport equilibration (VTE) treated Er:LiNbO3 crystals, which have different cut orientations (X-cut and Z-cut), different Er-doping levels (Er:(0.2, 0.4 and 2.0 mol%)LiNbO3) and different VTE durations (80, 120, 150 and 180 h), were recorded at room temperature in the wavenumber range 50-1000 cm−1 by using backward scattering geometry. The spectra were attributed on the basis of their spectral features and the previous experimental work and the most recent theoretical progress in lattice dynamics on pure LiNbO3. In comparison with the pure crystal the most remarkable effect of Er-doping on the Raman spectrum is observed for the E(TO9) mode. It does not appear at 610 cm−1 as the pure crystal, but locates at 633 cm−1. In addition, the doping also results in the lowering of the Raman phonon frequency, the broadening of the Raman linewidth and the changes of the relative Raman intensity of some peaks. The VTE treatment results in the narrowing of the linewidth, the recovery of the lowered phonon frequency and the further changes of relative Raman intensity. The narrowing of Raman linewidth indicates that the VTE processing has brought these crystals closer to stoichiometric composition. The VTE treatment has induced the formation of a precipitate ErNbO4 in the high-doped Er(2.0%):LiNbO3 crystals whether X- or Z-cut. For these precipitated crystals, besides above linewidth and phonon frequency features, they also display more significant Raman intensity changes compared with those not precipitated crystals. In addition, a slight mixing between A1(TO) and E(TO) spectra is also observed for these precipitated crystals. Above doping and VTE effects on Raman spectra were quantitatively or qualitatively correlated with the characteristics of the crystal structure and phonon vibrational system.  相似文献   

4.
The average fluorescence wavelength of the laser crystal is the most important factor in the radiation-balanced laser (RBL). Polarized fluorescence spectra measurements of the anisotropic laser material ytterbium-doped potassium gadolinium tungstate, Yb3+:KGd(WO4)2, are carried out along principal refractive index directions m, p, g in three configurations in order to achieve the best design for RBL. The average fluorescence wavelength of g polarization is the shortest, so g should be in the face of fluorescence emission; m polarization should be normal to that face to avoid its strong absorption to fluorescence photons. Fluorescence re-absorption causes the average fluorescence wavelength of the directly measured spectra red-shifted at least 9 nm. Methods for depressing radiation trapping are suggested accordingly, which are high power pumping, low doping concentration, small dimensions and fusing with undoped KGd(WO4)2.  相似文献   

5.
Growth conditions and electron paramagnetic resonance investigations of two well oriented KSm(WO4)2 and KEr(WO4)2 single crystals have been presented and discussed. Hyperfine structure of Sm3+ ion was detected and analyzed for angular and temperature dependences. EPR spectra of KEr(WO4)2 and its angular dependence showed the presence of 5 magnetically nonequivalent Er centers in the crystal. A change in the type of magnetic interactions was analyzed using mixed (Gaussian and Lorentzian) fits of the EPR spectra.  相似文献   

6.
KGd1−x(WO4)2−y(MoO4)y:Eu3+x(0.1?x?0.75, y=0 and 0.2) phosphors are synthesized through traditional solid-state reaction and their luminescent properties in ultraviolet (UV) and vacuum ultraviolet (VUV) regions are investigated. Under 147 nm excitation, these phosphors show characteristic red emission with good color purity. In order to improve their emission intensity, the MoO42− (20 wt%) is introduced into the anion of KGd1−x(WO4):Eu3+x. The Mo6+ and Eu3+ co-doped KGd(WO4)2 phosphors show higher emission intensity in comparison with the singly Eu3+-doped KGd(WO4)2 in VUV region. The chromaticity coordination of KGd0.45(WO4):Eu3+0.55 is (x=0.669, y=0.331), while that of KGd0.45(WO4)1.8(MoO4)0.2:Eu3+0.55 is (x=0.666, y=0.334) in VUV region.  相似文献   

7.
NaBi1−xREx(XO4)2, X=W or Mo and RE=Pr, Nd, Ho, Er and Yb single crystals have been grown by the Czochralski technique. Rare earth concentrations about 3.5×1020 cm−3 have been achieved in crystals with good optical quality. Melt stability is obtained by synthesising NaBi(XO4)2 from the precursor Na2X4O13 phase and minimising Mo volatility. The strength of W and Mo compounds to chemical attack and thermal annealing in several atmospheres is reported. Mo compound is etched by inorganic acids and becomes coloured after vacuum annealing. The optical absorption, photoluminescence and refractive indices of the hosts are characterised and show a dichroic character. The lattice disorder induces broadening of the 10 K optical absorption of the rare earth impurities.  相似文献   

8.
The intrinsic formation of polyatomic defects in Sc2(WO4)3-type structures is studied by Mott Littleton calculations and Molecular Dynamics simulations. Defects involving the WO42− tetrahedron are found to be energetically favorable when compared to isolated W and O defects. WO42− Frenkel and (2Sc3+, 3WO42−) Schottky defects exhibit formation energies of 1.23 eV and 1.97 eV, respectively and therefore may occur as intrinsic defects in Sc2(WO4)3 at elevated temperatures. WO42− vacancy and interstitial migration processes have been simulated by classical Molecular Dynamics simulations. The interstitial defect exhibits a nearly 10 times higher mobility (with a migration energy of 0.68 eV), than the vacancy mechanism (with a slightly higher migration energy of 0.74 eV) and thus should dominate the overall ionic conduction. Still both models reproduce the experimental activation energy (0.67 eV) nearly within experimental uncertainty.  相似文献   

9.
Metal tungstates (MeWO4, Me = Ba, Sr and Ca) were successfully prepared using the corresponding Me(NO3)2·2H2O and Na2WO4·2H2O in ethylene glycol by the 5 h sonochemical process. The tungstate phases with scheelite structure were detected with X-ray diffraction (XRD) and selected area electron diffraction (SAED). Their calculated lattice parameters are in accord with those of the JCPDS cards. Transmission electron microscopy (TEM) revealed the presence of nanoparticles composing the products. Their average sizes are 42.0 ± 10.4, 18.5 ± 5.1 and 13.1 ± 3.3 nm for Me = Ba, Sr and Ca, respectively. Interplanar spaces of the crystals were also characterized with high-resolution TEM (HRTEM). Their crystallographic planes are aligned in systematic array. Six different vibration wavenumbers were detected using Raman spectrometer and are specified as ν1(Ag), ν3(Bg), ν3(Eg), ν4(Bg), ν2(Ag) and free rotation. Fourier transform infrared (FTIR) spectra provided the evidence of scheelite structure with W-O anti-symmetric stretching vibration of [WO4]2− tetrahedrons at 786-883 cm−1. Photoluminescence emission of the products was detected over the range of 384-416 nm.  相似文献   

10.
Middle infrared absorption, Raman scattering and proton magnetic resonance relaxation measurements were performed for [Zn(NH3)4](BF4) in order to establish relationship between the observed phase transitions and reorientational motions of the NH3 ligands and BF4 anions. The temperature dependence of spin-lattice relaxation time (T1(1H)) and of the full width at half maximum (FWHM) of the bands connected with ρr(NH3), ν2(BF4) and ν4(BF4) modes in the infrared and in the Raman spectra have shown that in the high temperature phase of [Zn(NH3)4](BF4)2 all molecular groups perform the following stochastic reorientational motions: fast (τR≈10−12 s) 120° flips of NH3 ligands about three-fold axis, fast isotropic reorientation of BF4 anions and slow (τR≈10−4 s) isotropic reorientation (“tumbling”) of the whole [Zn(NH3)4]2+ cation. Mean values of the activation energies for uniaxial reorientation of NH3 and isotropic reorientation of BF4 at phases I and II are ca. 3 kJ mol−1 and ca. 5 kJ mol−1, respectively. At phases III and IV the activation energies values for uniaxial reorientation of both NH3 and of BF4 equal to ca. 7 kJ mol−1. Nearly the same values of the activation energies, as well as of the reorientational correlation times, at phases III and IV well explain existence of the coupling between reorientational motions of NH3 and BF4. Splitting some of the infrared bands at TC2=117 K suggests reducing of crystal symmetry at this phase transition. Sudden narrowing of the bands connected with ν2(BF4), ν4(BF4) and ρr(NH3) modes at TC3=101 K implies slowing down (τR?10−10 s) of the fast uniaxial reorientational motions of the BF4 anions and NH3 ligands at this phase transition.  相似文献   

11.
Characteristics of two green emission bands, G(I) and G(II), and their origin were investigated within 0.4-300 K under photoexcitation in the 3.4-6.0 eV energy range for undoped and Mo6+-, Mo6+ , Y3+-, Mo6+, Nb5+-, Mo6+, Ce3+-, Cr6+-, La3+-, Ba2+- and Cd2+-doped PbWO4 crystals with different concentrations of impurity and intrinsic defects, grown by different methods and annealed at different conditions. The G(I) emission band, observed at low temperatures, located around 2.3-2.4 eV and excited around 3.9 eV, is usually a superposition of many closely positioned bands. The G(I) emission of undoped crystals is assumed to arise from the WO42− groups located in the crystal regions of lead-deficient structure. In Mo6+-doped crystals, this emission arises mainly from the MoO42− groups themselves. The G(II) emission band located at 2.5 eV is observed only in the crystals, containing the isolated oxygen vacancies — WO3 groups. This emission appears at T>160 K under excitation around 4.07 eV as a result of the photo-thermally stimulated disintegration of localized exciton states and subsequent recombination of the produced electron and hole centres near WO3 groups. The G(II) emission accompanies also thermally stimulated recombination processes in PbWO4 crystals above 150 K. Mainly the G(II) emission is responsible for the slow decay of the green luminescence in PbWO4 crystals.  相似文献   

12.
Detailed spectroscopic studies of the triply doped KGd(WO4)2:Ho3+/Yb3+/Tm3+ single crystals (which exhibit multicolor up-conversion fluorescence) are reported for the first time. The absorption spectra of crystals were measured at 10 and 300 K; the room temperature luminescence spectra were excited at 980 nm wavelength. The dependence of the intensity of luminescence on the excitation power for three different concentration of Ho3+, Yb3+ and Tm3+ ions was investigated. Efficient green and red up-converted luminescence of Ho3+ ions and weak blue up-conversion luminescence of Tm3+ ions were observed in spectra. The red emission of Ho3+ ions is more intensive than their green emission. Dependence of the up-conversion luminescence intensity on the excitation power and impurities concentration was also studied; the number of phonon needed for efficient up-conversion was determined for each case. All possible energy transfer processes between different pairs of the impurity ions' energy levels are also discussed.  相似文献   

13.
Well oriented KYb(WO4)2 and KTb0.2Yb0.8(WO4)2 single crystals have been investigated for their magnetic and optical properties using the Raman and EPR techniques. The registered EPR signal is dominated by three lines ascribed to ytterbium ions: one main and two satellites. Tb ions, although non-paramagnetic, distinctly modify magnetic properties of the KYb(WO4)2 single crystal. Basic parameters of the spin Hamiltonian, including Zeeman and hyperfine terms (g and A matrices) as well the spatial orientation between principal and crystallographic axes systems were determined for both crystals.  相似文献   

14.
Raman and FTIR spectra of CaFeTi(PO4)3 and CdFeTi(PO4)3 are recorded and analyzed. The observed bands are assigned in terms of vibrations of TiO6 octahedra and PO4 tetrahedra. The symmetry of TiO6 octrahedra and PO4 tetrahedra is lowered from their free ion symmetry. The presence of Fe3+ ion disrupts the Ti-O-P-O-Ti chain and leads to the distortion of TiO6 octrahedra and PO4 tetrahedra. The PO43− tetrahedra in both crystals are linearly distorted. The covalency bonding factor of PO43− polyanion of both the crystals are calculated from the Raman spectra and compared to that of other Nasicon-type systems. The numerical values of covalency bonding factor indicates that there is a reduction in redox energy and cell voltage and is attributed to strong covalency of PO43− polyanionin.  相似文献   

15.
Erbium and ytterbium codoped double tungstates NaY(WO4)2 crystals were prepared by using Czochralski (CZ) pulling method. The absorption spectra in the region 290-2000 nm have been recorded at room temperature. The Judd-Ofelt theory was applied to the measured values of absorption line strengths to evaluate the spontaneous emission probabilities and stimulated emission cross sections of Er3+ ions in NaY(WO4)2 crystals. Intensive green and red lights were measured when the sample were pumped by a 974 nm laser diode (LD), especially, the intensities of green upconversion luminescence are very strong. The mechanism of energy transfer from Yb3+ to Er3+ ions was analyzed. Energy transfer and nonradiative relaxation played an important role in the upconversion process. Photoexcited luminescence experiments are also fulfilled to help analyzing the transit processes of the energy levels.  相似文献   

16.
AWO4 (A = Ca, Sr) was prepared from metal salts [Ca(NO3)2·4H2O or Sr(NO3)2], Na2WO4·2H2O and different moles of cetyltrimethylammonium bromide (CTAB) in water by cyclic microwave irradiation. The structure of AWO4 was characterized by X-ray diffraction (XRD) and selected area electron diffraction (SAED). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed the presence of nanoparticles in clusters with different morphologies; spheres, peaches with notches, dumb-bells and bundles, influenced by CTAB. Six Raman vibrational peaks of scheelite structure were detected at 908, 835, 793, 399, 332 and 210 cm−1 for CaWO4 and 917, 833, 795, 372, 336 and 192 cm−1 for SrWO4, which are assigned as ν1(Ag), ν3(Bg), ν3(Eg), ν4(Bg), ν2(Ag) and νf.r.(Ag), respectively. Fourier transform infrared (FTIR) spectra provided the evidence of W-O stretching vibration in [WO4]2− tetrahedrons at 793 cm−1 for CaWO4 and 807 cm−1 for SrWO4. The peaks of photoluminescence (PL) spectra were at 428-434 nm for CaWO4, and 447-451 nm for SrWO4.  相似文献   

17.
Raman spectroscopy studies are reported for the RuSr2Eu1.5Ce0.5Cu2O10 (Ru-1222) compound at various temperatures of 300, 250, 200 and 90 K. Three distinct vibrational bands: the first at 110, 140, and 160 cm−1, the second at 295 and 347 cm−1, and third one at 651 cm−1 are seen in Raman spectra of the compound at room temperature. These bands are attached to the Cu atoms’ c-direction, the Ru atoms’ ab-plane stretching and Ru atoms’ c-direction anti-stretching modes. Below 200 K, an extra vibrational mode is also seen at 260 cm−1. Also, with a decrease in temperature, though the Cu vibrational modes remain intact, the Ru atoms’ ab-plane stretching (295 cm−1) and c-direction anti-stretching (651 cm−1) modes shift gradually to higher wave number positions. The frequencies of modes at 260 and 651 cm−1 showed anomalous softening and line-width broadening below 100 K that corroborates well with the spin ordering seen in susceptibility studies. The studied compound is a ferromagnetic superconductor with magnetic ordering of the Ru spins at 200 K and superconductivity below 30 K. A magnetic and electrical transport characterization of the compound is also presented briefly.  相似文献   

18.
新型激光晶体Yb:KY(WO4)2的结构与光谱   总被引:1,自引:0,他引:1       下载免费PDF全文
王英伟  王自东  程灏波 《物理学报》2006,55(9):4803-4808
采用顶部籽晶提拉法,以K2W2O7为助溶剂,生长了Yb:KY(WO4)2新型激光晶体.经热重-差热分析,确定晶体熔点为1045℃,相变温度为1010℃.X射线粉末衍射测试,验证所生长的晶体为β-Yb:KY(WO4)2.晶体结构分析确定Yb:KY(WO4)2晶体由WO6八面体连接而成,WO6八面体是由双氧桥(WOOW)及单氧桥(WOW)构成.晶体粉末样品室温下的红外及拉曼光谱测试,确定WO6原子基团、双氧桥及单氧桥的振动频率.晶体的吸收峰位于940nm,980nm,发射峰位于989nm—1030nm. 关键词: 晶体结构 光谱 晶体生长  相似文献   

19.
Infrared optical absorption has been used to study OHimpurities into congruent co-doped LiNbO3:Cr3+:ZnO crystals doped with different Zn2+ concentration. The OH IR absorption spectra present three bands that can be associated with different OH complex centres available in the lattice. For crystals with lower Zn2+ concentrations (<4.7%) only one IR absorption band centred at 2867 nm (3490 cm−1) is reported which is associated with the OH unperturbed vibration. For crystals with higher Zn2+ concentrations (>4.7%), two new bands associated with OHvibration in distortion environment are reported. These bands are centred at 2827 nm (3537 cm−1) and 2847 nm (3512 cm−1) and can be associated with OH-Zn2+ and Cr3+(Li+)-OH-Zn2+(Int.) complex centres, respectively. Electron paramagnetic resonance (EPR) has been used to identify the Cr3+ centres in the lattice of the doped LiNbO3:ZnO crystals.  相似文献   

20.
A series of NaY1−yEuy(WO4)2−x(MoO4)x (x=0−2 and y=0.06−0.15) phosphors have been prepared by a combustion route. X-ray powder diffraction, photoluminescence excitation and emission spectra were used to characterize the resulting samples. The excitation spectra of these phosphors show the strongest absorption at about 396 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. Their emission spectra show an intense red emission at 616 nm due to the 5D07F2 electric dipole transition of Eu3+. As the Mo content increases, the intensity of the 5D07F2 emission of Eu3+ activated at wavelength of 396 nm increases and reaches a maximum when the relative ratio of Mo/W is 2:3. The intense red-emission of the tungstomolybdate phosphors at near-UV excitation suggests that the material is a potential candidate for white light emitting diode (WLEDs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号