首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Fourier transform microwave spectrum of isopropenyl acetate (CH3COOC(CH3)CH2) has been measured under molecular beam conditions. The experimental data as well as quantum chemical calculations have shown that this molecule exists as only one conformer of C1 symmetry, in which the vinyl group is tilted by an angle of approximately 70° against the plane containing the ester group. Due to internal rotation of the acetyl methyl group, we found large A-E splittings of all lines (from a few MHz up to 1 GHz or more). We also were able to resolve the splitting due to the internal rotation of the second isopropenyl methyl group. The A species lines split into doublets and the E species lines into triplets. These splittings vary from 10 kHz up to 1 MHz, much smaller than the splittings due to the acetyl methyl group. By analyzing the spectrum with the program Xiam, a torsional barriers of 135.3498(38) and 711.7(73) cm−1 for the acetyl methyl group and the isopropenyl methyl group were observed, respectively. All lines in the spectrum were also fitted with the program Erham to a standard deviation of only 2.3 kHz.  相似文献   

2.
Feng Gao 《Surface science》2007,601(17):3579-3588
The surface chemistry of proline is explored on Pd(1 1 1) using a combination of temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy. Proline adsorbs on Pd(1 1 1) at temperatures of 250 K and below into second and subsequent layers prior to the saturation of the first layer, where approximately 70% of the adsorbed proline is present in its zwitterionic form. Molecular proline desorbs between ∼315 K and ∼333 K depending on coverage. When adsorbed at ∼300 K, only the first monolayer is formed, and the proline is present as zwitterions, oriented such that all of the carbons are detected equally by XPS. Proline decomposes by scission of the C-COO bond, where the carboxylate moiety desorbs as carbon monoxide and carbon dioxide, while the nitrogen-containing moiety desorbs as to HCN, and evolves pyrrole at ∼390 K, pyrrolidine at ∼410 K, and final species that desorbs at ∼450 K that cannot be unequivocally assigned but may be 2-butenenitrile (CH3-CHCH-CN), 3-butenenitrile (CH2CH-CH2-CN), 2-methyl-2-propenenitrile (CH2C(CH3)-CN) or cyclopropanecarbonitrile.  相似文献   

3.
Atomic Cl was generated by pulsed laser photolysis at 193 nm of CCl4, and was monitored by time resolved resonance fluorescence in the course of reaction with excess C2H2, diluted in Ar bath gas at pressures from 13 to 800 mbar. At 288 K simple pseudo first order kinetics were observed. Over 365-430 K bi-exponential decays were obtained, because of equilibration between the β-chlorovinyl adduct and the reactants. The ratios of forward and reverse rate constants yield ΔfH298(CHCHCl) = 274.0 ± 1.0 kJ mol−1 via a Third-Law analysis of the carbon-chlorine bond strength. The thermochemistry compares well with that predicted by an initio theory. The effective second-order rate constant was pressure dependent and was analyzed using Troe’s unimolecular formalism. Over the whole temperature range the low-pressure limiting value for addition, with Ar bath gas, is given by k0 = 4.1 × 10−30 (T/300 K)−2.47 cm6 molecule−2 s−1.  相似文献   

4.
5.
The nature of phosphonopeptides containing N-terminal l-phenylalanine (l-Phe), namely l-Phe-dl-NH-CH(CH(CH3)2)-PO3H2 (A), l-Phe-l-NH-CH(CH3)-PO3H2 (B), and l-Phe-dl-NH-CH(CH2CH2COOH)-PO3H2 (C) (Fig. 1 presents molecular structure of these molecules), adsorbed on electrochemically roughened and colloidal silver surfaces has been explored by surface-enhanced Raman spectroscopy (SERS). To reveal adsorption mechanism of these species on the basis of their SERS spectra at first Fourier-transform Raman (FT-RS) and absorption infrared (FT-IR) spectra of non-adsorbed molecules were measured. Examination of enhancement, frequency shifts, and changes in relative intensities of SERS bands due to adsorption and surface roughens variation reveals that the tilted compounds adsorb on the electrochemically roughened silver substrate in similar way, while they behave differently on the colloidal silver surface. A stronger enhancement of in-plane ring vibrations of the l-Phe ring, i.e., ν3 and ν18b (B2), over these of the A2 symmetry in all SERS spectra on the electrochemically roughened silver substrate suggests that the ring interacts with this surface adopting slightly deflect orientation from the perpendicular one. Also, enhancement of PO and -CH2-/-CH3 fragments vibrations points out that they are involved in adsorption process on this substrate. This conclusion was drawn on the basis of the enhancement of 1274-1279 and 1138-1152 (ν(PO)), 1393-1400 (δ(CH) + ρb(CNH2) + ν(C-CO) + δ(CH3)), ∼1455 (δ(CCH3/CCH2) + ρb(CH3/CH2), and 1505-1512 cm−1 (δ(CH2) + Phe(ν19a)) bands. Although a relative intensity ratio of these bands in the presented SERS spectra is different. On the other hand, on the colloidal silver nanoparticles, the aromatic ring of all molecules is lying flat or takes almost parallel orientation to this surface. Besides, A interacts also via P-terminal group (568, 765, 827, 1040, and 1150 cm−1), whereas B mainly through NH2-C-(CO)-CNH-(712 and 1255 cm−1). In the case of C, it adsorbs on the silver colloidal surface mainly through the aromatic ring of l-Phe, while other fragments of the molecule are in close proximity to this surface as comes off the weak enhancement of bands due to the aliphatic vibrations.  相似文献   

6.
The synthesis of 14 novel N-propargylic β-enaminones from the reaction of β-alkoxy vinyltrihalomethyl[carboxyethyl] ketones [R3C(O)CHC(R1)OMe, where R3 = CF3, CCl3, CO2Et and R1 = Me, Et, Pr, Bu, i-Pent, CH2CH2CO2Me] with propargyl amines [R2NHCH2CCH, where R2 = Pr, PhCH2] is reported. Yields, solvents and reaction times needed for reaction completion, by microwave irradiation (MW), conventional thermal heating (TH) and under ultrasound irradiation (US) are compared. The best results were obtained under US irradiation in good to excellent yields (70-93%).  相似文献   

7.
Kevin Summers 《Surface science》2007,601(6):1443-1455
The surface reactions of 2-iodopropane ((CH3)2CHI) on gallium-rich GaAs(1 0 0)-(4 × 1), was studied by temperature programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS). CH3CHICH3 adsorbs molecularly at 120 K but dissociates below room temperature to form chemisorbed 2-propyl ((CH3)2CH) and iodide (I) species. Thermal activation causes desorption of the molecular species at 240 K, and this occurs in competition with the further reactions of the (CH3)2CH and I chemisorbed species. Self-coupling of the (CH3)2CH results in the formation of 2,3-dimethylbutane ((CH3)2CH-CH(CH3)2) at 290 K. β-Hydride elimination in (CH3)2CH yields gaseous propene (CH3CHCH2) at 550 K while reductive elimination reactions of (CH3)2CH with surface hydrogen yields propane (CH3CH2CH3) at 560 K. Recombinative desorption of the adsorbed hydrogen as H2 also occurs at 560 K. We observe that the activation barrier to carbon-carbon bond formation with 2-propyls on GaAs(1 0 0) is much lower than that in our previous investigations involving ethyl and 1,1,1-trifluoroethyl species where the β-elimination process was more facile. The difference in the surface chemistry in the case of 2-propyl species is attributable to its rigid structure resulting from the bonding to the surface via the second carbon atom, which causes the methyl groups to be further away from the surface than in the case of linear ethyl and 1,1,1-trifluoroethyl species. The β-hydride and reductive elimination processes in the adsorbed 2-propyl species thus occurs at higher temperatures, and a consequence of this is that GaI desorption, which is expected to occur in the temperature range 550-560 K becomes suppressed, and the chemisorbed iodine leaves the surface as atomic iodine.  相似文献   

8.
Zhenhua He 《Surface science》2006,600(3):514-526
The room-temperature adsorption and thermal evolution of iso-, cis- and trans-dichloroethylene (DCE) on Si(1 1 1)7 × 7 have been studied by vibrational electron energy loss spectroscopy and thermal desorption spectrometry (TDS). The presence of the Si-Cl stretch at 510 cm−1 suggests that, upon adsorption, all three isomers dissociate via C-Cl bond breakage on the 7 × 7 surface to form mono-σ bonded chlorovinyl , which could, in the case of iso-DCE, further dechlorinate to vinylidene (:CCH2) upon insertion into the back-bond. The higher saturation exposure for the Si-Cl stretch at 510 cm−1 observed for cis- and trans-DCE than iso-DCE suggests that Cl dissociation via the CHCl group in the cis and trans isomers is less readily than the CCl2 group in iso-DCE. Our TDS data show remarkable similarities in both molecular desorption near 360 K and thermal evolution of the respective adstructures for all three isomers on Si(1 1 1)7 × 7. In particular, upon annealing to 450 K, the mono-σ bonded chlorovinyl adspecies is found to further dechlorinate to either vinylene di-σ bonded to the Si surface or acetylene to be released from the surface. Above 580 K, vinylene could also become gaseous acetylene or undergo H abstraction to produce hydrocarbon or SiC fragments. All three DCE isomers also exhibit TDS features attributable to an etching product SiCl2 at 800-950 K and recombinative desorption products HCl at 700-900 K and H2 at 650-820 K. The stronger Cl-derived TDS signals and Si-Cl stretch at 510 cm−1 over 450-820 K for trans-DCE than those for cis-DCE indicate stronger dechlorination for trans-DCE than cis-DCE, which could be due to less steric hindrance resulting from the formation of the chlorovinyl adspecies for trans-DCE during the initial adsorption/dechlorination process. Finally, our density functional calculations qualitatively support the thermodynamic feasibility and relative stabilities of the proposed adstructures involving chlorovinyl, vinylidene, and vinylene adspecies.  相似文献   

9.
CH4 dissociation on Ni surfaces, which is important in CH4 reforming reactions, was discussed by using density functional theory. It was found that the CHx species were changed to anions after chemisorption. The site preference of CHx (x = 0-3) species on Ni(1 1 1), Ni(1 0 0) and Ni(1 1 0) was located on the basis of the computed chemisorption energies. Ni(1 0 0) is the most preferred surface for CH4 dissociation, compared to Ni(1 1 0) and the widely investigated Ni(1 1 1).  相似文献   

10.
The two-channel thermal decomposition of toluene, C6H5CH3 → C6H5CH2 + H (1) and C6H5CH3 → C6H5 + CH3 (2), was investigated in shock tube experiments over the temperature range of 1400-1780 K at a pressure of 1.5 (±0.1) bar. Rate coefficients for reactions (1) and (2) were determined by monitoring benzyl radical (C6H5CH2) absorption at 266 nm during the decomposition of toluene diluted in argon and modeling the temporal behavior of the benzyl concentration with a kinetic model. The first-order rate coefficients determined at a pressure of 1.5 bar are expressed by k1(T) = 2.09 × 1015 exp (−87510 [cal/mol]/RT) [s−1] and k2(T) = 2.66 × 1016 exp (−97880 [cal/mol]/RT) [s−1]. The resulting branching ratio, k1/(k1 + k2), ranges from 0.8 at 1350 K to 0.6 at 1800 K.  相似文献   

11.
The absorption of ultraviolet narrow-line laser radiation by methyl radicals (CH3) in the electronic system has been studied at high temperatures behind shock waves. Methyl radicals at high temperatures were generated by the shock heating of methyl precursors: azomethane, methyl iodide, and ethane. The spectral shape and intensity of the broadband absorption feature from 211.5 to 220 nm at high temperature (1565 K) has been measured. The absorption coefficient of CH3 at 216.62 nm, the wavelength of peak absorption at high temperatures in the P+Q band, has been determined from 1200 to 2500 K. Additionally, the absorption coefficients of several interfering UV-absorbing combustion species (, and C3H6) have been determined at 216.62 nm.  相似文献   

12.
A chirped pulse microwave spectrometer has been used to record microwave spectra of the 35Cl and 37Cl isotopologues of methyl chlorodifluoroacetate, CClF2C(O)OCH3, between 8 GHz and 16 GHz. The target compound was spectroscopically examined as it participated in a supersonic expansion of argon. Only one conformer was observed. The rotational spectra were recorded with sufficient resolution to observe (i) splittings due to the internal rotation of the methyl group, and (ii) splittings from the coupling of the chlorine quadrupolar nucleus. A total of 785 transitions have had quantum numbers assigned. Analysis of the spectra observed has produced an experimental barrier to the methyl group internal rotation, V3, of 370(2) cm−1. It is noted that this barrier is a little lower than that determined for methyl acetate [V3 = 425 cm−1, J. Sheridan, W. Bossert and A. Bauder, J. Mol. Spectrosc., 80 (1980) 1-11], and this is rationalized through a comparison of molecular structures. Lastly, all components of both the 35Cl and 37Cl chlorine nuclear electric quadrupolar coupling tensor have been determined.  相似文献   

13.
We present measurements of the linear Stark effect on the 4I15/2 → 4I13/2 transition in an Er3+-doped proton-exchanged LiNbO3 crystalline waveguide and an Er3+-doped silicate fiber. The measurements were made using spectral hole burning techniques at temperatures below 4 K. We measured an effective Stark coefficient (Δμeχ)/(h) = 25 ± 1 kHz/V cm−1 in the crystalline waveguide and  kHz/V cm−1 in the silicate fiber. These results confirm the potential of erbium-doped waveguides for quantum state storage based on controlled reversible inhomogeneous broadening.  相似文献   

14.
Hiroyuki Kizaki 《Surface science》2007,601(18):3956-3960
Photon stimulated ion desorption (PSID) from methyl ester terminated self-assembled monolayer (MHDA-SAM, HS(CH2)15COOCH3) and methyl mercaptoacetate (MA, HSCH2COOCH3) on Ag has been investigated using soft X-ray in the C and O K-edge regions. In MHDA-SAM on Ag, site-selective ion desorption has been clearly observed at resonant core excitations of C1s, O1s(OCH3) → σ(OCH3) and O1s(OCH3) → σ(COCH3). Ion intensity in MA on Ag is obviously reduced for (n = 1-3) at C1s, O1s(OCH3) → σ(OCH3) excitations, and no site-selective reaction at O1s(OCH3) → σ(COCH3) excitations has been observed. These reactions may be influenced by configurational difference of reactive sites. It is suggested that surface effects on the selective reaction due to positioning methyl ester group near the surface plays an important role.  相似文献   

15.
The gas-phase Raman spectra of 1,3-butadiene and its 2,3-d2, 1,1,4,4-d4, and d6 isotopologues have been recorded with high sensitivity and resolution of 0.7 cm−1. Hot band series of fundamentals and combinations involving the ν13 torsional vibration of the s-trans rotamer have been observed for each of the isotopologues. Modes studied were ν10 (CH wag), ν12 (CH2 twist), ν10 + ν12, ν15 (CH2 wag) + ν16 (CH2 twist), and ν23 (CH2 rock) + ν24 (CCC deformation). The spacings of the quantum states of the torsional contribution were found to decrease with additional excitation of this mode (ν13) in the upper vibrational states except for the ν23 + ν24 combination state.  相似文献   

16.
Cyclopentadienyl (CPDyl) was generated for study by oxidizing and pyrolizing 1,3-cyclopentadiene (CPD) in Princeton’s adiabatic, atmospheric pressure flow reactor. This study used nitrogen carrier gas, initial CPD concentrations from 1000 to 3000 ppm by volume (ppmv), equivalence ratios from fuel lean (? = 0.6) to pyrolytic conditions (? = 100) and initial temperatures from 1100 to 1200 K. The reaction progress was followed from 5 to 150 ms using a water cooled sample probe and GC-FID analysis of C1-C14 species. The oxidation results show that CPD and CPDyl react via 19 pathways to yield 22 hydrocarbon intermediates. Analysis of the oxidative CPDyl ring opening pathways reveals the importance of the 2,4-cyclopentadienoxy (c-C5H5O) β-scission reaction: c-C5H5O ↔ CHCH-CHCH-CHO. The fastest theoretical mechanism has a calculated unimolecular high-pressure rate constant of 2.00 × 1013e−7215/T s−1 which is seven orders of magnitude larger at 1150 K than the previous literature estimate. Cyclopentadienone (CPDone) has been assumed to be an important intermediate in C5 ring oxidation even though it has not been unambiguously identified in the combustion environment. A detection limit of 20 ppmv for CPDone in the present apparatus failed to note any CPDone. A set of mechanistic pathways for the C5 ring oxidation includes steps to avoid unrealistic CPDone production is presented. The complex mechanism illustrates the need for detailed models to understand the combustion of aromatics and soot precursors. The article stresses the importance of CPDyl in the formation of aromatic rings during combustion, which subsequently leads to polycyclic aromatic hydrocarbons (PAH) and soot precursors.  相似文献   

17.
The chemical behaviour of 3-hexyne on oxygen modified Ru(0 0 1) surfaces has been analysed under ultrahigh-vacuum, using reflection-absorption infrared spectroscopy (RAIRS). The effects of oxygen coverage, 3-hexyne exposure and adsorption temperature were studied. Two modified Ru(0 0 1) surfaces were prepared: Ru(0 0 1)-(2 × 2)-O and Ru(0 0 1)-(2 × 1)-O that correspond to oxygen coverages (θO) of 0.25 and 0.5 ML, respectively. The striking result is the direct bonding to an O atom when the modified surfaces are exposed to a very low dose (0.2 L) of 3-hexyne at low temperature (100 K). For θO = 0.25 ML, an unsaturated oxametallacycle [Ru-O-C(C2H5)C(C2H5)-Ru] is proposed, identified by RAIRS for the first time, through the νCC and νCO modes. Further decomposition at 110 K yields smaller oxygenated intermediates, such as acetyl [μ32(C,O)-CH3CO], co-adsorbed with a small amount of carbon monoxide and non-dissociated species. The temperature at which a fraction of molecules undergoes complete C-C and C-H bond breaking is thus much lower than on clean Ru(0 0 1). The ultimate decomposition product observed by RAIRS at 220 K is methylidyne [CH]. Another key observation was that the adsorption temperature is not determinant of the reaction route, contrarily to what occurs on clean Ru(0 0 1): even when 3- hexyne strikes the surface at a rather high temperature (220 K), the multiple bond does not break completely. For θO = 0.5 ML, a saturated oxametallacycle [Ru-O-CH(C2H5)-CH(C2H5)-Ru] is also proposed at 100 K, identified by the νasO-C-C (at 1043 cm−1) and νsO-C-C (at 897 cm−1) modes, showing that some decomposition with C-H bond breaking occurs. For this oxygen coverage, the reaction temperatures are lower, and the intermediate surface species are less stable.  相似文献   

18.
The high resolution absorption spectrum of methane in the 1.58 μm transparency window has been recorded at room temperature and at 79 K by CW-Cavity Ring Down Spectroscopy using a cryogenic cell and a series of Distributed Feed Back (DFB) diode lasers. The achieved sensitivity (αmin ∼ 3 × 10−10 cm−1) has allowed for a detailed characterization of the 6289-6526 cm−1 region which corresponds to the lowest opacity of the transparency window. A list of 6868 and 4555 transitions with intensities as weak as 1 × 10−29 cm/molecule was constructed from the recordings at 297 and 79 K, respectively. By comparison with a spectrum of CH3D recorded separately by Fourier Transform Spectroscopy, 1282 and 640 transitions of monodeuterated methane, CH3D, in natural abundance in our sample were identified at 297 and 79 K, respectively.The rotational temperature determined from the intensity distribution of the 3ν2 band of CH3D (79.3 K) was found in good agreement with the temperature value previously obtained from the Doppler line broadening. The reduction of the rotational congestion by cooling down to 79 K reveals a spectral region near 6300 cm−1 where CH3D transitions are dominant.The low energy values of the transitions observed both at 79 K and at room temperature were derived from the variation of their line intensities. These transitions with lower energy determination represent 93.9% and 68.4% of the total absorbance in the region, at 79 K and room temperature, respectively. The quality of the obtained empirical low energy values is demonstrated for CH4 by the marked propensity of the empirical low J values to be close to integers. The line lists at 79 K and room temperature provided as Supplementary Material allow accounting for the temperature dependence of methane absorption between these two temperatures. The investigated region covering the 5ν4 band of the 12CH4 isotopologue will be valuable for the theoretical treatment of this band which is the lowest energy band of the icosad.  相似文献   

19.
The high resolution absorption spectra of 13CH4 were recorded at 81 K by differential absorption spectroscopy using a cryogenic cell and a series of distributed feed back (DFB) diode lasers and at room temperature by Fourier transform spectroscopy. The investigated spectral region corresponds to the high energy part of the 13CH4 tetradecad dominated by the 2ν3 overtone near 5988 cm−1. Empirical line lists were constructed containing, respectively, 1629 13CH4 transitions detected at 81 K (5852-6124 cm−1) and 3481 features (including 85 lines of 12CH4) measured at room temperature (5850-6150 cm−1); the smallest measured intensities are about 3 × 10−26 and 4 × 10−25 cm/molecule at 81 and 296 K, respectively. The lower state energy values were derived for 1196 13CH4 transitions from the variation of the line intensities between 81 and 296 K. These transitions represent 99.2% and 84.6% of the total absorbance in the region, at 81 and 296 K, respectively. Over 400 additional weak features were measured at 81 K and could not be matched to lines observed at room temperature. The quality of the resulting empirical low energy values is demonstrated by the excellent agreement with the already-assigned transitions and the clear propensity of the empirical low J values to be close to integers. The two line lists at 81 and at 296 K provided as Supplementary material will enable future theoretical analyses of the upper 13CH4 tetradecad.  相似文献   

20.
Kinetics and mechanisms for reactions of OH with methanol and ethanol have been investigated at the CCSD(T)/6-311 + G(3df2p)//MP2/6-311 + G(3df2p) level of theory. The total and individual rate constants, and product branching ratios for the reactions have been computed in the temperature range 200-3000 K with variational transition state theory by including the effects of multiple reflections above the wells of their pre-reaction complexes, quantum-mechanical tunneling and hindered internal rotations. The predicted results can be represented by the expressions k1 = 4.65 × 10−20 × T2.68 exp(414/T) and k2 = 9.11 × 10−20 × T2.58 exp(748/T) cm3 molecule−1 s−1 for the CH3OH and C2H5OH reactions, respectively. These results are in reasonable agreements with available experimental data except that of OH + C2H5OH in the high temperature range. The former reaction produces 96-89% of the H2O + CH2OH products, whereas the latter process produces 98-70% of H2O + CH3CHOH and 2-21% of the H2O + CH2CH2OH products in the temperature range computed (200-3000 K).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号