首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
In the past, time-resolved IR stimulated luminescence (TR-IRSL) curves from feldspar have mainly been measured over a few hundred μs with the purpose of estimating the lifetimes of the components. In this study, we present the decay form of time-resolved IRSL and IR stimulated phosphorescence (IRSP) from orthoclase feldspar covering over 8 orders of magnitude (50 ns to ~7 s). A detailed characterisation of the slowly decaying signals (ms to s time scales) from feldspar is undertaken to obtain further insight into the role of re-trapping in both the IR stimulated luminescence (IRSL) and the relatively more stable post-IR IRSL signals. The decay form of the different signals examined here shows a weak dependence on preheat temperature and a strong dependence on stimulation temperature. Interestingly, the IRSP curves show a conspicuous kink of which the position is linearly dependent on the on-time duration.The data on thermal dependence of these signals might suggest that the decay behaviour of the time-resolved IRSL and phosphorescence signals mainly reflect the occupancy of electrons in the band tail states with a significant contribution from the shallow traps. This interpretation is supported by thermoluminescence (TL) curves showing the photo-transfer effect during short IR and post-IR IR stimulations.  相似文献   

2.
A.F. Qasrawi 《哲学杂志》2013,93(22):3027-3035
The effect of photoexcitation on the current transport mechanism in amorphous indium selenide thin films was studied by means of dark and illuminated conductivity measurements as a function of temperature. Analysis of the dark electrical conductivity in the temperature range 110–320 K reveals behaviour characteristic of carriers excited to the conduction band and thermally assisted variable-range hopping (VRH) at the Fermi level above 280 K and below 220 K, respectively. In the temperature range 220–280 K, a mixed conduction mechanism was observed. A conductivity activation energy of ~300 meV (above 280 K), a density of localised states (evaluated assuming a localisation length of 5 Å) of 1.08 × 1021 cm?3 eV?1, an average hopping distance of 20.03 Å (at 120 K) and an average hopping energy of 27.64 meV have been determined from the dark electrical measurements. When the sample was exposed to illumination at a specific excitation flux and energy, the values of the conductivity activation energy, the average hopping energy and the average hopping range were significantly decreased. On the other hand, the density of localised states near the Fermi level increased when the light flux was increased. Such behaviour was attributed to a reversible Fermi level shift on photoexcitation.  相似文献   

3.
The temperature dependences of the conductivities parallel and perpendicular to the layers in layered TlGaSe2 single crystals are investigated in the temperature range from 10 K to 293 K. It is shown that hopping conduction with a variable hopping length among localized states near the Fermi level takes place in TlGaSe2 single crystals in the low-temperature range, both along and across the layers. Hopping conduction along the layers begins to prevail over conduction in an allowed band only at very low temperatures (10–30 K), whereas hopping conduction across the layers is observed at fairly high temperatures (T?210 K) and spans a broader temperature range. The density of states near the Fermi level is determined, N F=1.3×1019eV·cm3)?1, along with the energy scatter of these states J=0.011 eV and the hopping lengths at various temperatures. The hopping length R along the layers of TlGaSe2 single crystals increases from 130 Å to 170 Å as the temperature is lowered from 30 K to 10 K. The temperature dependence of the degree of anisotropy of the conductivity of TlGaSe2 single crystals is investigated.  相似文献   

4.
A strong dependence of thermal activation energy (TAE) on infrared (IR) stimulation time for the infrared stimulated luminescence (IRSL) signal was observed for K-feldspar grains extracted from several sediments and granites from China. A TAE value as low as ~0.1 eV was observed at the beginning of IR stimulation and increased to ~0.45 eV after 90 s. For a trap depth of ~2 eV below the conduction band for the IRSL traps, the TAE value of ~0.45 eV is consistent with the energy gap between the excited states (~0.5 eV below the conduction band) and conduction band. This phenomenon is explained as the result of the coexistence of thermally assisted recombination via conduction band or band-tail states hopping and athermal tunnelling recombination of electrons from the excited states under IR stimulation, leading to the observation of a higher anomalous fading rate in the initial part of the IRSL decay curve.  相似文献   

5.
Magnetic parameters and the relaxation behavior of paramagnetic centers in an iodine-doped poly(tetrathiafulvalene) semiconductor with a d.c. conductivity of 10?5 S·cm?1 have been studied using mainly the 2 mm waveband EPR technique in the temperature range of 110–270 K. The EPR line shape analysis confirms the existence of immobile radicals pinne on short polymer chains and mobile polarons with different relaxation parameters in slightly doped poly(tetrathiafulvalene). The temperature dependences of electron spin-lattice and spin-spin relaxation times of paramagnetic centers of both types have been determined independently using the saturation method at the operation frequency ν e = 140 GHz. An anisotropic slow libration of immobile polarons with an activation energy of 0.02 eV have been registered for the first time using the saturation transfer EPR method. The temperature dependences of intrachain diffusion and interchain hopping rates in poly(tetrathiafulvalene) are determined from theT 1 andT 2 EPR data. The interchain spin dynamics is shown to correlate with libration of polarons trapped on polymer chains and is in good agreement with a hopping charge transport mechanism.  相似文献   

6.
The oxygen tracer diffusion coefficient (D?) has been measured for 9 mol% scandia 2 mol% yttria co-doped zirconia solid solution, (Y2O3)2(Sc2O3)9(ZrO2)89, using isotopic exchange and line scanning by Secondary Ion Mass Spectrometry, as a function of temperature. The values of the tracer diffusion coefficient are in the range of 10? 8–10? 7 cm2 s? 1 and the Arrhenius activation energy was calculated to be 0.9 eV; both valid in the temperature range of 600–900 °C. Electrical conductivity measurements were carried out using 2-probe and 4-probe AC impedance spectroscopy, and a 4-point DC method at various temperatures. There is a good agreement between the measured tracer diffusion coefficients (D?, Ea = 0.9 eV) and the diffusion coefficients calculated from the DC total conductivity data (Dσ, Ea = 1.0 eV), the latter calculated using the Nernst–Einstein relationship.  相似文献   

7.
H.M. Dong  W. Xu  R.B. Tan 《Solid State Communications》2010,150(37-38):1770-1773
The temperature relaxation and energy loss of hot Dirac fermions are investigated theoretically in graphene with carrier–optical phonon scattering. The time evolutions of temperature and energy loss for hot Dirac fermions in graphene are calculated self-consistently. It shows that the carrier–optical phonon coupling results in the energy relaxation of hot carriers excited by an electric field, and the relaxation time for temperature is about 0.5–1 ps and the corresponding energy loss is about 10–25 nW per carrier for typically doped graphene samples with a carrier density range of 1–5×1012 cm?2. Moreover, we analyze the dependence of temperature and energy relaxation on initial hot carrier temperature, lattice temperature and carrier density in detail.  相似文献   

8.
Glasses of the general formula xLi2O·(20?x)CaO·30P2O5·30V2O5·20Fe2O3 with x=0, 5, 10, 15 and 20 mol% were prepared; IR, density, electrical and dielectric properties have been investigated. Lithia-containing glasses revealed more (P2O7)4?, FeO6, V–O? and PO? groups and mostly have lower densities than those of lithia-free ones. The electrical properties showed random behavior by replacing Li2O for CaO, which has been assigned to the change of the glass structure. The results of activation energy and frequency-dependent conductivity indicate that the conduction proceeds via electronic and ionic mechanisms, the former being dominant. The mechanism responsible for the electronic conduction is mostly thermally activated hopping of electrons from Fe(II) ions to neighboring Fe(III) sites and/or from V4+ to V5+. The dielectric constant (ε′) showed values that depend on the structure of glass according to its content of Li2O. The (ε′) values are ranging between 3 and 41 at room temperature for 1 kHz, yet at high temperatures, glass with 20 mol Li2O exhibits values of 110 and 3600 when measurement was carried out in the range 0.1–1 kHz, and at 5 MHz, respectively.  相似文献   

9.
《Current Applied Physics》2010,10(4):975-984
Polycrystalline nickel–zinc–copper ferrites with chemical formula Ni0.6+xZn0.2Cu0.2VxFe2−2xO4,(0.0  x  0.25) were prepared by the ceramic route. The X-ray diffraction (XRD) analysis of the samples results confirms single-phase spinel structure. Scanning electron microscopy (SEM) of the prepared ferrites reveal that vanadium addition resulted in a rapid grain growth with large pores trapped inside the grains as the vanadium concentration increases. The ac conductivity σac has been studied as a function of frequency and temperature over the temperature range (300–600 K). The results obtained for these materials reveal a semiconductor – to semimetal transition as V5+ content increases. All studies composition exhibit a transition with change in the slope of conductivity. The obtained temperature Tc is found to be decrease with the increasing vanadium content. The hopping of electrons between Fe3+ and Fe2+ as well as the hole hopping between Ni3+ and Ni2+ are found to responsible for the conduction mechanism. The relation of the universal exponent s with temperature gives evidence for the presence of the correlation barrier hopping (CHB) mechanism in these compounds. The impedance technique has been used to study effect of grain and grain boundary on the electrical properties. The analysis data show only one semi-circle for all samples except for sample with x = 0.05. The results suggested that the conduction mechanism takes place predominantly through the grain in the studied samples.  相似文献   

10.
A complete spectroscopic study of 15 strong ozone lines in the 1132.5–1134.5 cm?1 spectral range has been undertaken in the framework of the development of the stratospheric wind interferometer for transport studies (SWIFT), led by the Canadian Space Agency. Measurements have been performed with an interferometrically stabilized tunable diode laser spectrometer. Absolute line positions and intensities have been determined with high accuracy (4×10?5 cm?1 and 1–2% respectively). Self- and air-broadening coefficients at 296 K have been obtained with an accuracy of 1%. The air-shifting coefficient and its temperature dependence have also been measured for unblended lines together with the temperature dependence of the air-broadening. Line intensities have been calibrated by simultaneously performed UV absorption measurements at 253.7 nm. Our IR/UV comparison supports a previously reported inconsistency between recommended IR intensities (HITRAN08) and UV absorption cross-sections and indicates that current IR intensities are too small by ~3%.  相似文献   

11.
Transport properties of electrons in energy band tails of disordered semiconductors are studied experimentally using a material system in which (i) the width and shape of the band-tail are approximately known and (ii) the Fermi energy is controllable. The material is heavily-doped, closely-compensated, crystalline n-GaAs whose compensation ratio can be made arbitrarily close to unity by the use of two techniques that are described in detail. This control of the Fermi level through compensation permits the measurement of the transport properties of electrons at various energies in the band-tail.

Using band tails having a width of ~50 meV, measurements have been made of the temperature dependence of the d.c. conductivity and Hall coefficient, the frequency dependence of the a.c. conductivity and the electric field dependence of the d.c. conductivity (the last two at low temperatures).

The evidence demonstrates the progressively greater localization of states deeper in the tails. No sign is found of a sharp mobility edge. There is a number of close similarities to the properties of amorphous semiconductors but some significant differences. The frequency dependence of the a.c. conductivity at low temperatures is essentially identical with that of amorphous semiconductors in accord with the general interpretation that conductivity at low temperatures takes place by electron hopping among localized states near the Fermi energy. The detailed temperature dependence of the d.c. conductivity at low temperatures is log σ=σ 0 exp [?(T 0/T)1/2], thus disagreeing with a theoretical expectation that the exponent for low temperature hopping conduction should be 1/4. At low temperatures, the electric field dependence of the conductivity shows a variation as σ~exp (bF/T) over a considerable range extending down to field strengths close to 1 V/cm. This closely resembles recent observations on amorphous semiconductors but the range of field strengths here is lower by several orders of magnitude.  相似文献   

12.
ZnIn2Se4 is of polycrystalline structure in as synthesized condition. It transforms to nanocrystallite structure of ZnIn2Se4 film upon thermal evaporation. Annealing temperatures influenced crystallite size, dislocation density and internal strain. The hot probe test showed that ZnIn2Se4 thin films are n-type semiconductor. The dark electrical resistivity versus reciprocal temperature for planar structure of Au/ZnIn2Se4/Au showed existence of two operating conduction mechanisms depending on temperature. At temperatures >365 K, intrinsic conduction operates with activation energy of 0.837 eV. At temperatures <365 K, extrinsic conduction takes place with activation energy of 0.18 eV. The operating conduction mechanism in extrinsic region is variable range hopping. The parameters such as density of states at Fermi level, hopping distance and average hopping energy have been determined and it was found that they depend on film thickness. The dark current–voltage characteristics of Au/n-ZnIn2Se4/p-Si/Al diode at different temperatures ranging from 293–353 K have been investigated. Results showed rectification behavior. At forward bias potential <0.2 V, thermionic emission of electrons from ZnIn2Se4 film over a potential barrier of 0.28 V takes place. At forward bias potential >0.2 V, single trap space charge limited current is operating. The trap concentration and trap energy level have been determined as 3.12×1019 cm−3 and 0.24 eV, respectively.  相似文献   

13.
The emission spectra of single and polyterbium centers have been measured at the excitation of CaSO4:Tb3+ phosphors with different charge compensators (Na+, calcium vacancies, etc.) by 3.8–35 eV photons or 5 and 300 keV electrons at 6–300 K. The possible mechanisms providing quantum yield above unity for green (5D4 → 7FJ) and blue emission (5D3 → 7FJ) of Tb3+ at the direct intracenter excitation, excitation of oxyanions or creation of hot (nonrelaxed) electrons and holes have been discussed. On the basis of thermally stimulated luminescence at 6–600 K, the peculiarities of the hopping diffusion of relaxed electrons and holes and their tentative low-temperature self-trapping have been considered.  相似文献   

14.
The temperature dependences of the conductivity and the thermoelectric coefficient in TlFeS2 and TlFeSe2 samples have been investigated in the temperature range 85–400 K. The variable-range hopping conduction has been established. It is found that the density of localized states N F near the Fermi level is 1.7×1018 and 3.3×1018 eV?1 cm?3, and the average hopping length R is 109 and 104 Å for TlFeS2 and TlFeSe2, respectively. The non-Arrhenius (activationless) behavior of the hopping conductivity is established in the temperature region T<200 K for TlFeS2 and T<250 K for TlFeSe2.  相似文献   

15.
To elucidate the thermoelectric properties at high temperatures, the electrical conductivity and Seebeck coefficient were measured at temperatures between 423 K and 973 K for perovskite-type ceramics of BaBi1?xSbxO3 solid solutions with x=0.0–0.5. All the ceramics exhibit p-type semiconducting behaviors and electrical conduction is attributed to hopping of small polaronic holes localized on the pentavalent cations. Substitution of Bi with Sb causes the electrical conductivity σ and cell volume to decrease, but the Seebeck coefficient S to increase, suggesting that the Sb atoms are doped as Sb5+ and replace Bi5+, reducing 6s holes conduction from Bi5+(6s0) to Bi3+ (6s2). The thermoelectric power factor S 2σ has values of 6×10?8–3×10?5 W m?1 K?2 in the measured temperature range, and is maximized for an Sb-undoped BaBiO3?δ, but decreases upon Sb doping due to the decreased σ values.  相似文献   

16.
Using low-pressure chemical vapour deposition (LPCVD), multi-walled carbon nanotubes (MWNTs) are grown on nanocrystalline Fe70Pt30 film. The Fe70Pt30 nanocrystalline film is deposited by vapour condensation technique. The size of the nanoparticles varies from 5–10 nm, as inferred from SEM micrographs of Fe70Pt30 film. SEM and TEM observations of as-grown CNTs film reveal that these are multi-walled and their diameter varies from 30–80 nm and length is of the order of several micrometers respectively. There is a structural change from ordinary geometry of CNTs to bamboo shaped as suggested by TEM image. Raman spectra shows sharp G and D bands with a higher intensity of G band showing the presence of graphitic nature of the nanotubes. An experimental study of the temperature dependence of electrical conductivity of MWNTs film is done over a wide temperature range from (293–4 K). The measured data gives a good fit to variable-range hopping (VRH) and the results are interpreted using Mott's (VRH) model. The conduction mechanism of the MWNTs film shows a crossover from the exp[ -(To/T)1/4] law in the temperature range (293–110 K) to exp[ -(Tm/T)1/3] in the low temperature range (110–4 K). This behaviour is attributed to temperature-induced transition from three-dimension (3D) to two-dimension (2D) VRH. Various Mott's parameters like characteristic temperature (Tm), density of states at Fermi level N(EF), localization length (ξ), hopping distance (R), hopping energy (W) have also been calculated using above-mentioned model.  相似文献   

17.
18.
Single-phase agglomerated Sr2FeMoO6-δ powders with the iron and molybdenum cations superstructural ordering of 88% were synthesized by sol-gel technique from the Sr(NO3)2 and Fe(NO3)3·9H2O solutions with pH = 4. The ultrasound dispersion enabled us to obtain 75 nm grains. Powders were pressed with 4 GPa to receive the ceramics. The additional annealing at 700 K promoted the appearance of 7.5% SrMoO4 phase. The nanocomposite with dielectric sheaths around the grains was obtained. Magnetization temperature dependences in zero-field cooled mode revealed inhomogeneous magnetic states. At temperature below 19 K, the superparamagnetic state is observed. Temperature increase leads to a realization of the stable superparamagnetic and metastable ferrimagnetic states, blocked by magnetic anisotropy energy. The resistivity temperature dependences have the semiconducting conductivity type. The charge transfer due to the hopping conductivity on the localized states in the energy band near the Fermi level dominates at 260–300 K. At 130–200 K the charge transfer is realized by electrons tunneling through the energy barrier. The electrons inelastic tunneling on conducting channels between grains, through the localized states in the dielectic interlayer dominates at low temperatures. The resistivity decreases in magnetic fields and the negative tunneling magnetoresistive effect reaching 41% occurs.  相似文献   

19.
The polarized reflectance spectra of single crystals of the low-dimensional organic conductor (EDT-TTF)4[Hg3I8] undergoing a metal-insulator phase transition at a temperature T < 35 K have been presented. The spectral region of the study is 700–6000 cm?1 (0.087–0.74 eV), and the temperature range is 300–9 K. It has been shown that the reflectance spectra are determined by a system of quasi-free electrons of the upper half-occupied molecular π-orbitals, which form a half-filled metallic band in the crystals. A high anisotropy of the spectra and their temperature dependences have been found. For two polarizations, the quantitative analysis of the spectra at 100 and 25 K has been performed in the framework of the phenomenological Drude model, the effective mass and the width of the initial metallic π-electron band have been deter-mined, and it has been found that the conducting system in the crystals has a quasi-one-dimensional character. As temperature decreases, the spectra demonstrate substantial changes indicating the formation of the energy gap (or pseudogap) in the spectrum of electronic states in the range of ~1500–2500 cm?1. In the low-frequency region (700–1600 cm?1), a vibrational structure has been observed, and the most intense feature of the structure (ω = 1340 cm?1) is caused by the interaction of electrons with intramolecular vibrations of the C=C bonds of the EDT-TTF molecule. For temperatures of 15 and 9 K, the analysis of the spectra has been performed in the framework of the theoretical “phase phonon” model taking into account the interaction of electrons with the intramolecular vibrations. It has been concluded that the metal-insulator transition observed in the reflectance spectra of the crystals is similar to the Peierls dielectric transition that occurs in a system of electrons coupled with the intramolecular vibrations of the molecules forming the crystal.  相似文献   

20.
《Current Applied Physics》2009,9(5):1072-1078
Electrical conductivity and dielectric measurements have been investigated for four different average grain sizes ranging from 3 to 7 nm of nanocrystalline Ni0.2Cd0.3Fe2.5−xAlxO4 (0.0  x  0.5) ferrites. The impedance spectroscopy technique has been used to study the effect of grain and grain boundary on the electrical properties of the Al doped Ni–Cd ferrites. The analysis of data shows only one semi-circle corresponding to the grain boundary volume suggesting that the conduction mechanism takes place predominantly through grain boundary volume in the studied samples. The variation of impedance properties with temperature and composition has been studied in the frequency range of 120 Hz–5 MHz between the temperatures 300–473 K. The hopping of electrons between Fe3+ and Fe2+ as well as hole hopping between Ni3+ and Ni2+ ions at octahedral sites are found to be responsible for conduction mechanism. The dielectric constant and loss tangent (tan δ) are found to decrease with increasing frequency, whereas they increase with increasing temperature. The dielectric constant shows an anomalous behavior at selected frequencies, while the temperature increases, which is expected due to the generation of more electrons and holes as the temperature increases. The behavior has been explained in the light of Rezlescu model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号