首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
张荣瀚  李琪 《声学学报》2013,38(2):167-171
提出一种从低频混响信号中提取简正波衰减系数的方法。利用简正波过滤技术对垂直阵混响信号进行分析,获得单阶简正波混响声场。假设海底反向散射矩阵可分离,从单阶简正波平均混响强度中提取出有效海底反向散射矩阵元素,最后利用不同距离上的有效海底反向散射矩阵元素计算出简正波的衰减系数。利用该方法从混响信号中提取出的简正波衰减系数预报的声传播损失和相同海域实测声传播损失一致。该简正波衰减系数提取方法有效避免了海底散射衰减和简正波传播衰减耦合的问题,同时对海底参数反演和水声环境的快速评估也具有重要的意义。   相似文献   

2.
This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1–7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6 mm stainless steel plate). In contrast, minimal sound pressure transmission (∼10–20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study.  相似文献   

3.
郭晓乐  杨坤德  马远良 《物理学报》2015,64(17):174302-174302
在浅海环境中, 海底环境参数对声传播有着重要的影响. 由于利用单个宽带声源进行海底参数反演时, 随着距离的增大, 误差变大, 本文提出利用warping变换对在浅海波导中传播的, 不同距离上的两个宽带爆炸声源进行简正波的有效分离, 实现了宽带爆炸声源的远距离海底参数反演. 采用全局寻优遗传算法对提取出的模态频散到达时间差与理论计算的模态频散到达时间差进行匹配处理, 并结合随距离连续变化的声传播损失, 实现了利用单水听器进行海底参数的反演. 实验结果表明: 运用反演出的海底参数提取模态频散时间差和实测数据提取出的模态频散时间差吻合得较好; 而通过传播损失反演得到的海底衰减系数与频率呈指数关系. 最后, 对反演结果进行了后验概率分析, 并将本组爆炸声源的反演结果用于另一组不同距离上爆炸声源时仍然有效, 来评价反演结果的有效性.  相似文献   

4.
The control of sound transmission through panels is an important noise control problem in the aerospace, aeronautical, and automotive industries. The trend towards using lightweight composite materials that have lower sound insulation performance is a negative factor regarding low frequency transmission loss. Double-panel partitions with the gap filled with sound absorption materials are often employed to improve the sound insulation performance with reduced added weight penalty. However, in the low frequency range, the strong coupling between the panels through the air cavity and mechanical paths may greatly reduce the sound transmission performance, making it even lower than the performance of a single panel in some frequency ranges. In this work, an experimental investigation of a new kind of hybrid (active/passive) acoustic actuator is presented. The idea consists of replacing the acoustic absorption material by a hybrid actuator aiming at improving the transmission loss at low frequencies without altering the passive attenuation. A prototype of the system is tested in a plane wave acoustic tube setup. Different kinds of SISO feedforward control implementations were used to attenuate the sound power transmitted through the hybrid active–passive panel using an error microphone or a particle velocity sensor placed downstream with respect to the sample panel. Measurement results of the transmission loss with active and hybrid attenuation are presented and discussed.  相似文献   

5.
Time-dependent seafloor acoustic backscatter (10-100 kHz)   总被引:2,自引:0,他引:2  
A time-dependent model of the acoustic intensity backscattered by the seafloor is described and compared with data from a calibrated, vertically oriented, echo-sounder operating at 33 and 93 kHz. The model incorporates the characteristics of the echo-sounder and transmitted pulse, and the water column spreading and absorption losses. Scattering from the water-sediment interface is predicted using Helmholtz-Kirchhoff theory, parametrized by the mean grain size, the coherent reflection coefficient, and the strength and exponent of a power-law roughness spectrum. The composite roughness approach of Jackson et al. [J. Acoust. Soc. Am. 79, 1410-1422 (1986)], modified for the finite duration of the transmitted signal, is used to predict backscatter from subbottom inhomogeneities. It depends on the sediment's volume scattering and attenuation coefficients, as well as the interface characteristics governing sound transmission into the sediment. Estimation of model parameters (mean grain size, roughness spectrum strength and exponent, volume scattering coefficient) reveals ambiguous ranges for the two spectral components. Analyses of model outputs and of physical measurements reported in the literature yield practical constraints on roughness spectrum parameter settings appropriate for echo-envelope-based sediment classification procedures.  相似文献   

6.
海底沉积物作为海洋波导声传播的下边界普遍存在于大洋中,获知其特性对于准确的声传播和混响建模是十分必要的。为了能够快速而准确地测量沉积物中的声速和衰减系数,提出一种基于脉冲压缩技术的测量方法,对接收信号进行压缩来提取透射波,根据不同厚度样品的透射波来计算沉积物中的声速和衰减系数。该方法不仅可以克服实验过程中经常遇到的多途干扰,而且测量过程简单,可以同时获得测量频带内所有频点的声速和衰减系数,即实现了对声速和衰减系数的宽带测量。在实验室环境条件下,90~170kHz的测量频带内,测得沙样品中的声速为1710~1713m/s,衰减系数在56~70dB/m之间。通过窄带和宽带测量结果的比较可以看出,声速的宽带测量结果与窄带测量结果吻合得较好,而衰减系数在频带后半部分存在较大的起伏。   相似文献   

7.
声波在气体中传播时,气体的热粘性效应会使声波产生一定程度的衰减,且气体的声吸收系数随温度的升高而增大。由于发动机的排气温度较高,热粘性效应引起的排气管道中的噪声衰减应加以考虑。基于准平面波理论,首次计算了考虑热粘性效应时不同温度、流速和管道尺寸下排气管道中的传递损失,分析了各参数对管道中噪声衰减的影响。结果表明,随着温度和频率的升高热粘性声衰减增强,而气流流速和管道直径的增加会降低直管中的热粘性声衰减。对于简单膨胀腔,传递损失的预测结果表明,热粘性效应使通过频率处的声衰减有所改善。  相似文献   

8.
Determinations of shear wave speeds of sound and attenuation coefficients are reported for soft tissues, a silicone rubber reference material, and a gel used in manufacturing ultrasonically tissue-mimicking materials. Fresh bovine tissues were investigated, including calfskin, liver, cardiac muscle, and striated muscle. Because of the very large shear wave attenuation coefficients, reasonably accurate determinations of shear wave properties are difficult to make. The quantity measured directly was the complex reflection coefficient for shear waves at a planar interface between the sample and fused silica. Measurements were made at frequencies spanning the range 2-14 MHz. The shear wave attenuation coefficients increase with frequency and are of the order of 10(4) times the longitudinal wave attenuation coefficients. The shear wave speeds of sound also increase with frequency but are only a few percent of the longitudinal wave speeds of sound. The results are accurate enough to allow frequency dependencies to be proposed.  相似文献   

9.
The mechanism of active control on sound transmission through a mechanically linked double-wall structure into an acoustic cavity is investigated in this paper. Two control methods, i.e., structural control and acoustic control under two linkage cases (soft and hard) are investigated to analyze the effect of the links on the selection of control strategies and the corresponding control mechanisms. Simulations are performed to examine the dominant control mechanism (modal suppression or modal rearrangement) in different frequency ranges for each control case. The alteration in the structural-acoustic coupling is also analyzed so as to explain the mechanisms of sound attenuation. In addition, the dominance of the acoustic mode (0, 0, 0) in the energy transmission process as well as its use in designing a more effective sensor/actuator arrangement is discussed.  相似文献   

10.
The anisotropy of frequency-dependent backscatter coefficient, attenuation, and speed of sound is assessed in fresh rat skeletal muscle within 5 h post-mortem. Excised rat semimembranosus and soleus muscles are measured in 37 degrees C Tyrode solution, with the muscle fibers at 90 degrees and 45 degrees orientations to the incident sound beam. Reflected and through transmission signals from either a 6- or 10-MHz focused transducer give frequency dependent information in the 4-14 MHz range. The attenuation coefficient in each muscle is consistently a factor of 2.0 +/- 0.4 lower for propagation perpendicular to the fibers than at 45 degrees, whereas speed of sound shows a much milder anisotropy, and is slightly faster for the 90 degrees orientation. The largest anisotropy is seen in the backscatter coefficient, most notably in the semimembranosus where the magnitude at 90 degrees is over an order of magnitude greater than at 45 degrees, with the frequency dependence in both cases giving a power law between 1.5 and 2.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号