首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The freezing and melting phase transitions for gallium embedded into a porous glass with a pore size of about 8 nm were studied using acoustic, NMR, and x-ray techniques. It was shown that the broadened solidification and melting transitions upon deep cooling up to complete freezing at 165 K were due to the formation of β-Ga within pores. The offset of confined β-Ga melting was lowered by about 21 K compared to the bulk β-Ga melting point. Both melting and freezing in pores were irreversible. The fulfillment of some special thermal conditions led to gallium crystallization into other modifications. The role of heterogeneous crystallization in freezing of confined gallium is discussed.  相似文献   

2.
The paper presents the results of studying the crystallization and melting processes of Ga–In eutectic alloys, which are embedded in opal matrices, using acoustic and NMR methods. The indium concentrations in the alloys were 4, 6, 9, and 15 at %. Measurements were performed upon cooling from room temperature to complete crystallization of the alloys and subsequent heating. It is revealed how the size effects and alloy composition influence the formation of phases with α- and β-Ga structures and on changes in the melting-temperature ranges. A difference was observed between the results obtained using acoustic and NMR methods, which was attributed to different temperature measurement conditions.  相似文献   

3.
A conventional phase-pulse acoustic method was used to study melting and crystallization of sodium nitrite embedded in the pores of mesoporous silicate matrices. The pore diameter was 20, 37, and 52 Å. The measurements were performed at a frequency of 3–8 MHz in the temperature interval 290–560 K. The temperature dependence of ultrasonic velocity was found to exhibit anomalies corresponding to phase transitions of sodium nitrite. The transitions were smeared in temperature and shifted to lower temperatures from the melting point T b of bulk sodium nitrite; the shift in crystallization temperature was greater than that of the melting temperature. The irreversible character of melting was revealed. The size dependence of the melting temperature of sodium nitrite was obtained. Phenomena observed in the experiments were discussed with the use of different size effect models.  相似文献   

4.
The processes of melting and freezing of small mercury particles embedded in porous glasses with nanometric pore sizes are studied by an ultrasonic method for various values of the pore filling factor. The filling factor is found to have a threshold, below which the acoustic anomalies accompanying phase transitions change their character. The critical radius of mercury nanoparticles that corresponds to the zero melting temperature is estimated.  相似文献   

5.
尼龙6是一种多晶型的半结晶高聚物。实验采用蒸沉法制备出尼龙6,首先通过XRD和FTIR的手段进行表征,与采用沸水处理的尼龙6样品表征结果对比,确定其为γ晶型,然后在130~211℃的温度范围内进行热处理,通过DSC研究其在低于熔点热处理时的整个热行为变化过程,并运用FTIR观察其在不同条件下热处理发生的晶型变化。发现蒸沉法制备的γ晶型尼龙6随着热处理温度的升高,整体结晶完善度以及晶片厚度随着处理温度的升高而增加。而且在这个过程中,样品厚度不同的晶片在不同温度下发生了γ晶型向α晶型的转化,最终在接近熔点(211℃)热处理时,样品变为以α晶型为主。  相似文献   

6.
An acoustic study is reported of the crystallization and melting of gallium embedded in an opal-like matrix. The variations of the velocity and absorption of longitudinal ultrasonic waves during phase transitions in the α and β modifications have been found to be hysteretic in nature. It is shown that acoustic methods do not detect gallium melting and crystallization in the tetragonal phase forming in a restricted geometry. Experimental evidence for heterogeneous crystallization of gallium in pores has been obtained.  相似文献   

7.
The effects of ethylene units content and crystallization temperature on the conformations, and the thermal and crystallization behavior were investigated by a combination of Fourier transform infrared (FTIR) spectroscopy, wide angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). The characterization of FTIR spectroscopy proves that the longer helical conformation sequences of the propylene–ethylene random (PER) samples decrease, whereas the shorter helical conformation sequences increase with the increase in ethylene units content. The increase of the shorter helical conformation sequences is favorable for the formation of the γ-phase in the crystals. A group of broad endothermic peaks can be seen clearly in the DSC curves of PER copolymers, which may be associated with the melting of mixtures of the α- and γ-forms in the crystals. The melting point, crystallization temperature, and crystallinity degree of the PER copolymers decrease with the increase in ethylene units contents. Three typical melting peaks of the PER copolymers crystallized isothermally between 80°C and 130°C were observed. The two higher melting peaks result from melting of the α- and γ-phase in the crystals, whereas the materials crystallized on quenching give the lowest peak. The WAXD results confirm that the PER copolymers crystallize from the melt, as mixtures of α and γ forms, in a wide temperature range. The critical number ζlim of the crystallizable units for the α-form increases with the increase in crystallization temperature for PER copolymers, which is favorable for the formation of the γ phases. The amount of γ-form increases with the increase in crystallization temperature at the expense of its α component, then reaches a maximum value at the crystallization temperature of 115°C, and finally decreases with further increase in the crystallization temperature.  相似文献   

8.
The phase transitions of non-polar organic fluids and of water, confined in the pores of porous silicon samples, were investigated by Differential Scanning Calorimetry (DSC). Two types of PS samples (p- and p+ type) with different pore size and morphology were used (with spherical pores with a radius of about 1.5 nm and cylindrical shape with a radius of about 4 nm respectively). The DSC results clearly show that the smaller the pores are, the larger is the decrease in the transition temperature. Moreover, a larger hysteresis between melting and freezing is observed for p+ type than for p- type samples. A critical review of the thermodynamical properties of small particles and confined fluids is presented and used to interpret and discuss our DSC results. The effects of the chemical dissolution as well as the influence of anodization time are presented, showing that thick p+ type porous silicon layers are non-homogeneous. The DSC technique which was used for the first time to investigate fluids confined in porous silicon, enables us to deduce original information, such as the pore size distribution, the decrease in the freezing temperature of confined water, and the thickness of non-freezing liquid layer at the pore wall surface. Received: 11 May 1998 / Revised and Accepted: 29 July 1998  相似文献   

9.
Acoustic studies of melting and crystallization of decane loaded in porous glasses (Vycor and laboratory-produced glass) have been performed. Measurements of the temperature dependences of the ultrasound velocity have revealed a decrease in the melting and crystallization temperatures of decane as compared to the melting point of bulk decane and a diffuseness of these phase transitions. The results obtained are compared with the predictions of the models describing melting of individual small particles. The specific features revealed in the acoustic properties of nanocomposites based on decane-loaded porous glasses are discussed.  相似文献   

10.
Poly(butylene succinate-co-adipate) (PBSA)/poly (trimethylene carbonate) (PTMC) blend samples with different weight ratios were prepared by solution blending. The morphologies after isothermal crystallization and in the melt were observed by optical microscopy (OM). Differential scanning calorimetry (DSC) was used to characterize the isothermal crystallization kinetics and melting behaviors. According to the OM image before and after melting, it was found that the blends formed heterogenous morphologies. When the PTMC content was low (20%), PBSA formed the continuous phase, while when the PTMC contents was high (40%), PBSA formed the dispersed phase. The glass transition temperatures (Tg) of the blends were determined by DSC and the differences of the Tg values were smaller than the difference between those of pure PBSA and PTMC. In addition, the equilibrium melting points were depressed in the blends. According to these results, the PBSA/PTMC blends were determined as being partially miscible blends. The crystallization kinetics was investigated according to the Avrami equation. It was found that the incorporation of PTMC did not change the crystallization mechanism of PBSA. However, the crystallization rate decreased with the increase of PTMC contents. The change of crystallization kinetics is related with the existences of amorphous PTMC, the partial miscibility between PLLA and PTMC, and the changes of phase structures.  相似文献   

11.
The crystallization kinetics of poly(ethylene terephthalate)/attapulgite (AT) nanocomposites and their melting behaviors after isothermal crystallization from the melt were investigated by DSC and analyzed using the Avrami method. The isothermal crystallization kinetics showed that the addition of AT increased both the crystallization rate and the isothermal Avrami exponent of PET. Step-scan differential scanning calorimetry was used to study the influence of AT on the crystallization and subsequent melting behavior in conjunction with conventional DSC. The results revealed that PET and PET/AT nanocomposites experience multiple melting and secondary crystallization processes during heating. The melting behaviors of PET and PET/AT nanocomposites varied in accordance with the crystallization temperature and shifted to higher temperature with the increase of AT content and isothermal crystallization temperature. The main effect of AT nanoparticles on the crystallization of PET was to improve the perfection of PET crystals and weaken its recrystallization behavior.  相似文献   

12.
Freezing and melting of Ar condensed in a granular packing of template-grown arrays of linear mesopores (SBA-15, mean pore diameter 8 nm) has been studied by specific heat measurements C as a function of fractional filling of the pores. While interfacial melting leads to a single melting peak in C, homogeneous and heterogeneous freezing along with a delayering transition for partial fillings of the pores result in a complex freezing mechanism explainable only by a consideration of regular adsorption sites (in the cylindrical mesopores) and irregular adsorption sites (in niches of the rough external surfaces of the grains and at points of mutual contact of the powder grains). The tensile pressure release upon reaching bulk-liquid-vapor coexistence quantitatively accounts for an upward shift of the melting and freezing temperature observed while overfilling the mesopores.  相似文献   

13.
An equiatomic nanocrystalline NiTi alloy, deformed by high-pressure torsion (HPT), was investigated. The as-prepared bulk NiTi alloy consisted of both amorphous and nanocrystalline phases. Crystallization and structural changes during annealing were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and transmission electron microscopy (TEM). DSC thermograms and X-ray analyses revealed stress relaxation and partial crystallization below 500?K, while grain growth of the nanocrystals occurred predominantly after heating to temperatures above 573?K. Along with the amorphous phase crystallization, a continuous growth of pre-existing nanocrystals that are retained after HPT was observed. The DSC signals observed during continuous heating experiments indicate an unusually large separation between the crystallization and growth stages. A detailed analysis of the evolution of the enthalpy release upon annealing revealed reproducibly non-monotonous trends with annealing temperature that cannot be explained solely by nucleation and growth of crystalline volume fractions. Instead, the results can be rationalized by assuming a reverse amorphization process occuring during annealing at 523?K. This behavior, which also caused a large variation in nanocrystal size after annealing at higher temperatures, is discussed with respect to the nanoscale microstructural heterogeneity after initial deformation processing.  相似文献   

14.
Abstract

Melting and crystallization behavior of poly(ethylene oxide) (PEO) with different molecular weight was investigated by modulated‐temperature differential scanning calorimetry (MT‐DSC)—step‐scan alternating DSC. It was found that by separating the reversing and nonreversing components of the (total) heat flow, PEO 10000, which exhibits the highest degree of crystallinity, shows the smallest nonreversing signal during crystallization. This effect can be attributed to the favorable structural features associated with spacial alignment. On the other hand, the crystallization process of PEO with molecular weight of 3400 is hindered by a relatively high content of end groups that may cause defects in the crystal lattice. For PEO 35000, low segmental mobility and chain entanglements lower the rate of crystallization. The area of the reversing component of PEO melting for different molecular weight fractions confirms that for PEO 10000, recrystallization is less intensive than for both the lower and higher molecular weight analogues.  相似文献   

15.
Melting (crystallization), a phase transition from a crystalline solid to a liquid state, is a common phenomenon in nature. We suggest a new factor, “the Casimir force analogue”, to describe mechanisms of melting and crystallization. The Casimir force analogue is a force occurring between the surfaces of solid and liquid phases of metals caused by different energy density of phonons of these phases. It explains abrupt changes in geometry and thermodynamic parameters at a melting point. “The Casimir force analogue” helps to estimate latent melting heat and to gain an insight into a solid–liquid transition problem.  相似文献   

16.
The present research work aimed to investigate the melting and solidification characteristics of NPCM. The NPCM was prepared using paraffin as the PCM and high conductive MWCNT as the nanomaterial without using any dispersant. The NPCM was prepared by dispersing MWCNTs with volume fractions of 0.3%, 0.6% and 0.9% in PCM as the base PCM. SEM morphology showed the uniform dispersion of MWCNTs in the paraffin wax. The MWCNT nano-additives PCMs showed two peaks in the heating curve by DSC measurement. Lessening in melting and solidification time of 30% and 43% was attained in the case of NPCM with 0.3% and 0.9%, respectively. It is observed from the DSC analysis that the latent heat of pure paraffin during freezing and melting cycle was 139.2 J/g (at 56.61 °C) and 131.8 J/g (at 57.55 °C), respectively. Whereas, the latent heat of NPCM with 0.9% of nanofluid was 150.7 J/g (at 56.36 °C) and 148.3 J/g (58.35 °C). It is construed that a maximum change in latent heat of 7.6% and 11% was observed between pure PCM and NPCM during freezing and melting cycle. For the lesser nanoparticle concentration (0.3% and 0.6%), the percentage change in latent heat was lesser than 0.9%.  相似文献   

17.
The origin of the multiple melting peaks in two linear polyesters, poly(ethylene succinate) (PES) and poly(butylene succinate) (PBS), of isothermally crystallized samples was investigated by differential scanning calorimetry (DSC) at atmospheric pressure and high-pressure differential thermal analysis (HP-DTA) at elevated pressures. In PES, the DSC melting curves showed three endothermic peaks at slow heating rates, which decreased to two with increasing heating rates. The HP-DTA curves showed that the area (qualitative) and peak height of the high-temperature peak decreased with increasing pressure and merged with the low-temperature peak at pressures above 450 MPa. This behavior supported the melting, recrystallization, and remelting model for the observed multiple melting endotherms. In PBS, the DSC melting curves were similar to those seen in PES. The HP-DTA curves were also similar to PES up to 400 MPa, but above this pressure the area and the peak height of the high-temperature peak and the temperature difference between the high- and low-temperature peaks remained unchanged. This observation suggested that the two peaks in PBS were due to the melting of two populations of crystals with different lamellar thickness originally present in the sample. The multiple melting behavior in isothermally crystallized PBS is proposed to incorporate both the melting of two populations of crystals and melting, recrystallization, and remelting.  相似文献   

18.
Phase transitions of acetonitrile confined in mesoporous silica SBA‐15 and mesocellular silica foam (MCF) having different pore diameters of 39.0, 39.9, 28.4, 8.7, and 4.6 nm with corresponding pore openings of 20.9, 12.1, 10.0, 8.7, and 4.6 nm were investigated by FT Raman spectroscopy. Melting and freezing temperature depressions were found for acetonitrile confined in mesoporous silica with pore opening sizes of 20.9, 12.1, 10.0 and 8.7 nm. A thermal hysteresis between the cooling and heating cycles was also observed. It appears that the smaller the pore opening, the larger the depression of melting or freezing temperature. Although two solid ( and ) phases exist in bulk acetonitrile, only the liquid →β phase transition was detected for acetonitrile confined in the nanopores of mesoporous silica. The solid‐to‐solid phase transition was not observed. For the mesoporous silica with the smallest pore size of 4.6 nm, neither the liquid nor the transition was observed for the confined acetonitrile. The results demonstrate that FT Raman spectroscopy is a useful technique for studying the phase transition behavior of organic compounds confined in silica‐based hosts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Melting points in mixtures of a crystallizable polymer with a low-molar-mass diluent depend on both, the diluent fraction and the crystal thickness. A differentiation of the two factors can be achieved by temperature-dependent SAXS experiments. A corresponding study, complemented by DSC, dilatometry, microscopy and AFM-imaging, was carried out for mixtures of a poly(ethylene-co-octene) with n-C16H34, c-C16H32 and methyl-anthracene, respectively. All diluents lead for a constant crystal thickness to melting point depressions in agreement with Raoult's law. On the other hand, the effect of the diluents on the thickness of the crystals formed at a fixed crystallization temperature varies. While in the presence of the two alkanes thicker crystals form, no effect arises for the methyl-anthracene—as was previously found for the octene-co-units. We consider these observations as a further support for our view that polymer crystallization follows a multi-stage route which includes a passage through an intermediate mesomorphic phase. Under such conditions crystal thicknesses would only be affected if the diluent is still present in the mesomorphic phase and stay invariant if the diluent molecules are already rejected when this intermediate phase forms.  相似文献   

20.
Unusual freezing and melting of gallium encapsulated in carbon nanotubes   总被引:1,自引:0,他引:1  
The freezing and melting behavior of gallium (Ga) encapsulated in carbon nanotubes was investigated through in situ observation in a transmission electron microscope. It is shown that Ga remains liquid up to -80 degrees C when encapsulated in carbon nanotubes. Results of detailed electron diffraction analysis show that the encapsulated Ga can crystallize in either beta phase or gamma phase rather than the common alpha phase upon freezing. Both beta-Ga and gamma-Ga melt at around -20 degrees C. While this is very close to the melting point of bulk beta-Ga (-16 degrees C), it is considerably higher than that of bulk gamma-Ga (-35.6 degrees C). It was observed that upon solidification, Ga has its unique crystallographic orientation relative to the host carbon nanotube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号