首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A real-space method has been introduced to study the pairing problem within the generalized Hubbard Hamiltonian. This method includes the bond-charge interaction term as an extension of the previously proposed mapping method [1] for the Hubbard model. The generalization of the method is based on mapping the correlated many-body problem onto an equivalent site- and bond-impurity tight-binding one in a higher dimensional space, where the problem can be solved exactly. In a one-dimensional lattice, we analyzed the three particle correlation by calculating the binding energy at the ground state, using different values of the bond-charge, the on-site (U) and the nearest-neighbor (V) interactions. A pairing asymmetry is found between electrons and holes for the generalized hopping amplitude, where the hole pairing is not always easier than the electron case. For some special values of the hopping parameters and for all kinds of interactions in the Hubbard Hamiltonian, an analytical solution is obtained. Received 21 January 2000 and Received in final form 18 July 2000  相似文献   

2.
The appearance of unconventional pairing in superconducting cuprates is examined from a microscopic model, taking into account important properties of hole‐doped copper oxides. An exchange interaction between fermions and dominantly inter‐site bipolarons is considered to be the mechanism which leads to the pairing. Its momentum dependency is connected to the well‐established fermion–phonon anomalies in cuprate superconductors. Since charge carriers in these materials are strongly correlated, a screened Coulomb repulsion is added to this exchange term. Any ad hoc assumptions like anisotropy are avoided, but a microscopic explanation of unconventional pairing for coupling strengths that are in accordance with experimental facts is provided. One important outcome is a mathematically rigorous elucidation of the role of Coulomb repulsion in unconventional pairing, which is shown to be concomitant with a strong depletion of superconducting pairs. The theory, applied to the special case of LaSr 214, predicts at optimal doping i) a coherence length of 21 Å , which is the same as that obtained from the Ginzburg–Landau critical magnetic field measured for this material, and ii) d‐wave pair formation in the pseudogap regime, that is, at temperatures much higher than the superconducting transition temperature.  相似文献   

3.
It has been noted that the Kitaev chain, a p-wave superconductor with nearest-neighbor pairing amplitude equal to the hopping term Δ=tΔ=t, and chemical potential μ=0μ=0, can be mapped into a nearest neighbor Ising model via a Jordan–Wigner transformation. Starting from the explicit eigenstates of the open Kitaev chain in terms of the original fermion operators, we elaborate that despite this formal equivalence the models are physically inequivalent, and show how the topological phase in the Kitaev chain maps into conventional order in the Ising model.  相似文献   

4.
A new model for correlated electrons is presented which is integrable in one-dimension. The symmetry algebra of the model is the Lie superalgebra gl(2|1) which depends on a continuous free parameter. This symmetry algebra contains the pairing algebra as a subalgebra which is used to show that the model exhibits Off-Diagonal Long-Range Order in any number of dimensions. Received: 9 December 1997 / Revised: 12 February 1998 / Accepted: 17 March 1998  相似文献   

5.
The next-nearest-neighbor hopping interactions of ρ-electrons in quasi-onedimensional organic polymer ferromagnet are considered by Peierls-Hubbard model, and a set of self-consistent equations are established to optimize the system. The competition between the SDW and CDW states, which is determined by the interplay between the electron-electron correlation and the next-nearest-neighbor hopping interaction, is studied. At the CDW state,the SDW along the main chain will be tuned by the CDW. Consequently the ferromagnetic state, in which all the spins of the unpaired electrons at side freeradicals are arranged parallelly,will be no longer a stable ground state of the system.  相似文献   

6.
Expressions for the screening length and the ambipolar diffusion length are derived, for the first time, for the case where hopping conduction and band conduction coexist in semiconductors with hydrogen-like impurities. A method is proposed for calculating the diffusion coefficient of electrons (holes) hopping between impurity atoms from data on the Hall effect, in the case where the hopping and band conductivities are equal. An interpretation is given of available experimental data on hopping photoconduction between acceptors (Ga) and donors (As) in p-Ge at T=4.2 K doped by a transmutation method. It is shown that the relative magnitude of the mobilities of electrons hopping between donors and holes hopping between acceptors can be found from the hopping photoconductivity measured as a function of the intensity of band-to-band optical carrier excitation.  相似文献   

7.
The magnetic properties of defects were studied in spin-gap magnets such as spin-Peierls magnet CuGeO3, Haldane magnet PbNi2V2O8, and charge-ordered ladder magnet NaV2O5. Doping of these systems with nonmagnetic impurities leads to additional magnetic degrees of freedom, which manifest themselves at low temperatures, where the intrinsic magnetic susceptibility of a spin-gap system is close to zero. Magnetic susceptibility appears due to the local destruction of the singlet ground state as a result of impurity-induced breakage of spin chains. Antiferromagnetically correlated areas arise near the spin-chain breaks. The sizes of these areas and the effective spin of these specific spin clusters are estimated. The order parameter and its spatially modulated depth are determined for impurity-induced magnetically ordered phases. The magnetic properties of defects for the NaV2O5 ladder structure are explained in the model of electrons “hopping” near the chain break. The hopping degree of freedom effectively influences the total spin of a spin-chain fragment and magnetization of the system.  相似文献   

8.
《Nuclear Physics B》1998,516(3):501-528
The correlation functions for a strongly correlated exactly solvable one-dimensional boson system on a finite chain as well as in the thermodynamic limit are calculated explicitly. This system, which we call the phase model, is the strong coupling limit of the integrable q-boson hopping model. The results are presented as determinants.  相似文献   

9.
Motivated by the physics of mobile triplets in frustrated quantum magnets, the properties of a two-dimensional model of bosons with correlated hopping are investigated. A mean-field analysis reveals the presence of a pairing phase without single-particle Bose-Einstein condensation (BEC) at low densities for sufficiently strong correlated hopping, and of an Ising quantum phase transition towards a BEC phase at larger density. The physical arguments supporting the mean-field results and their implications for bosonic and quantum spin systems are discussed.  相似文献   

10.
Tieyan Si 《Physics letters. A》2019,383(36):126018
A convective pairing mode of a boson-fermion mixture of ultracold atoms confined in an optical superlattice can be induced by the transformation between two optical superlattice configurations. This convective pairing mode only exists in discrete momentum vector zones for pairing energy gaps. The energy spectrum of gapped states is characterized by topological winding numbers. Two neighboring gapped states are bridged by an unstable chiral linear mode, which drives the boson-fermion pair into directional motion for a short period but remains static in the supersymmetric phase with time-reversal symmetry. The phase transition from a gapped mode to a gapless mode occurs at a critical temperature, whose distribution curve for chemical potential demonstrates a similar dome-like trend as that of high Tc superconductor. The boson-fermion pairing may shed light on a possible mechanism of high-Tc superconductivity.  相似文献   

11.
We propose a real-space, tight-binding model of electrons with short-range pairing interactions. The model involves a competition between the ordinary single particle hoppingt and an attractive interactionV between the singlet electronic pairs formed on neighboring lattice sites. The Hamiltonian effectively describes a mechanism for pair formation. We study the ground-state properties of its onedimensional version using numerically exact finite chain calculations for up toN= 10 sites. The ground-state wave functions, the energy spectrum, and various ground-state correlation functions are calculated with the help of an exactly equivalent system of two coupledS=1/2 spin chains. The results indicate the existence of a transition between the band and the localized pairs situation. The transition takes place forV/t= 1.4–0.1 and appears to be of essential singularity type. Comparison with other models used for pairing phenomena, like the negativeU-Hubbard model is made.  相似文献   

12.
We investigate the physical properties of two coupled chains of electrons, with a nearly half-filled band, as a function of the interchain hopping t and the doping. We show that upon doping, the system undergoes a metal-insulator transition well described by a commensurate-incommensurate transition. By using bosonization and renormalization we determine the full phase diagram of the system, and the physical quantities such as the charge gap. In the commensurate phase two different regions, for which the interchain hopping is relevant and irrelevant exist, leading to a confinement-deconfinement crossover in this phase. A minimum of the charge gap is observed for values of t close to this crossover. At large t the region of the commensurate phase is enhanced, compared to a single chain. At the metal-insulator transition the Luttinger parameter takes the universal value K ρ * = 1, in agreement with previous results on special limits of this model. Received 31 July 2000  相似文献   

13.
The current response for the parameter change of a mesoscopic system is a practical issue for future's circuit design. Nowadays most considered cases are various types of bias modulation, while the effect of change of conductor Hamiltonian is seldom addressed. In this paper, we investigate the response of ballistic transport induced by a sudden change of the conductor Hamiltonian. We formulize the terminal current in language of non-equilibrium Green's function. Our method is applied to one-dimensional tight-binding chains and we find that the terminal current has a delay to the Hamiltonian change. The amount of delay is not determined by the velocity of incident electrons in the bias window, but depends on the tight-binding hopping energy γ. The delay of current response at the detecting point away from where the Hamiltonian changes is Cγ?1, where C is a constant independent of the system.  相似文献   

14.
根据高温超导体层状结构特点和层间耦合效应,在一个唯象的S-N双层高温超导模型(S表示超导层,N表示非超导层)下,求得了非超导层的格林函数,证实了YBCO中CuO链上大能隙的存在,与实验结果相一致。  相似文献   

15.
We study the interplay of Anderson localization and interaction in a two chain Hubbard ladder allowing for arbitrary ratio of disorder strength to interchain coupling. We obtain three different types of spin gapped localized phases depending on the strength of disorder: a pinned 4k F Charge Density Wave (CDW) for weak disorder, a pinned 2k F CDWπ for intermediate disorder and two independently pinned single chain 2k F CDW for strong disorder. Confinement of electrons can be obtained as a result of strong disorder or strong attraction. We give the full phase diagram as a function of disorder, interaction strength and interchain hopping. We also study the influence of interchain hopping on localization length and show that localization is enhanced by a small interchain hopping but suppressed by a large interchain hopping. Received 6 April 2001  相似文献   

16.
C M Srivastava 《Pramana》1989,32(3):251-267
A theory of high temperature superconductivity in YBa2Cu3O7_δ compound has been developed on the basis of the momentum pairing of electrons through the relativistic Darwin interaction. The transport behaviour of electrons is explained in terms of a mechanism of correlated electron transfer arising from the electron-phonon coupling. A model Hamiltonian has been developed to describe the superconducting properties of the system. This gives an energy gap which is higher than the BCS value. Attempts have been made to explain the absence of isotope effect, the linear dependence of specific heat, the presence of larger temperature-independent paramagnetism in the normal phase and the softening of some of the optic phonon modes observed in this system.  相似文献   

17.
马磊  黄爱群  李俊 《中国物理 B》2011,20(3):37104-037104
This paper studies the normal state properties of itinerant electrons in a toy model,which is constructed according to the model for coexisting ferromagnetism and superconductivity proposed by Suhl [Suhl H 2001 Phys.Rev.Lett.87 167007].In this theory with ferromagnetic ordering based on localized spins,the exchange interaction J between conduction electrons and localized spin is taken as the pairing glue for s-wave superconductivity.It shows that this J term will first renormalize the normal state single conduction electron structures substantially.It finds dramatically enhanced or suppressed magnetization of itinerant electrons for positive or negative J.Singlet Cooper pairing can be ruled out due to strong spin polarisation in the J > 0 case while a narrow window for s-wave superconductivity is opened around some ferromagnetic J.  相似文献   

18.
In this paper, a plasma sheath containing primary electrons, cold positive ions, and secondary electrons is studied using a one-dimensional fluid model in which the primary electrons are described by q-non-extensive distribution according to the Tsallis statistics. Based on the Sagdeev potential method and the current balance relation, a modified sheath criterion, and floating potential are established theoretically. The effect of secondary electron emission on q-non-extensive plasma sheath characteristics have been numerically examined. A significant change is observed in the quantities characterizing the non-extensive plasma sheath with the presence of the secondary electrons. It is found that the sheath properties with super-extensive distribution and sub-extensive distribution are different compared with plasma sheath with Maxwell distribution .  相似文献   

19.
We consider the one-dimensional t - J model, which consists of electrons with spin S on a lattice with nearest neighbor hopping t constrained by the excluded multiple occupancy of the lattice sites and spin-exchange J between neighboring sites. The model is integrable at the supersymmetric point, J = t. Without spoiling the integrability we introduce an Anderson-like impurity of spin S (degenerate Anderson model in the limit), which interacts with the correlated conduction states of the host. The lattice model is defined by the scattering matrices via the Quantum Inverse Scattering Method. We discuss the general form of the interaction Hamiltonian between the impurity and the itinerant electrons on the lattice and explicitly construct it in the continuum limit. The discrete Bethe ansatz equations diagonalizing the host with impurity are derived, and the thermodynamic Bethe ansatz equations are obtained using the string hypothesis for arbitrary band filling as a function of temperature and external magnetic field. The properties of the impurity depend on one coupling parameter related to the Kondo exchange coupling. The impurity can localize up to one itinerant electron and has in general mixed valent properties. Groundstate properties of the impurity, such as the energy, valence, magnetic susceptibility and the specific heat coefficient, are discussed. In the integer valent limit the model reduces to a Coqblin-Schrieffer impurity. Received: 31 December 1997 / Accepted: 17 March 1998  相似文献   

20.
非含Cu氧化物超导体的超导电性机制   总被引:2,自引:0,他引:2       下载免费PDF全文
余超凡  陈斌  何国柱 《物理学报》1994,43(7):1152-1158
基于单占据aiσ表象和电荷涨落机制,应用简并微扰理论推导了非含cu氧化物Ba1-x·KxBiO3的双带Hubbard模型有效哈密顿量.考虑到坐标空间两个相反自旋空穴的次近邻格位配对,得到了格林函数运动方程和超导方程.合理解释了超交换作用和跳跃能对次近邻配对的作用,并且超导窗是由于坐标空间Cooper配对的结果. 关键词:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号