首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 437 毫秒
1.
恒星光谱分类是天文学研究的一个热点问题。随着观测光谱数量的急剧增加,传统的人工分类无法满足实际需求,急需利用自动化技术,特别是数据挖掘算法来对恒星光谱进行自动分类。关联规则、神经网络、自组织网络等数据挖掘算法已广泛应用于恒星光谱分类。其中,支持向量机(SVM)分类能力突出,被广泛应用于恒星光谱分类。该方法试图在两类样本之间找到一个最优分类面将两类分开。该方法具有较高的时间复杂度,计算效率有限。双支持向量机(TWSVM)的出现有效地解决了SVM面临的效率问题。该方法通过构造两个非平行的分类面将两类分开,每一类靠近某个分类面,而远离另一个分类面。TWSVM的计算效率较之传统SVM提高近4倍,因此,自TWSVM提出后便受到研究人员的持续关注。但上述方法在分类决策时,一方面没有考虑数据的分布特征,另一方面较易受噪声点和奇异点的影响,分类效率难以显著提升。鉴于此,在双支持向量机的基础上,提出融合数据分布特征的模糊双支持向量机(TWSVM-SDP)。该方法引入线性判别分析(LDA)的类间离散度和类内离散度,用以表征光谱数据的分布性状;引入模糊隶属度函数用以降低噪声点和奇异点对分类结果的影响。在SDSS DR8恒星光谱数据集上的比较实验表明,与支持向量机SVM、双支持向量机TWSVM等传统分类方法相比,融合数据分布特征的模糊双支持向量机TWSVM-SDP具有更优的分类能力。该方法亦存在一定的局限性,其中一大难题是其无法处理海量光谱数据。接下来将利用大数据处理技术,来对所提方法在大数据环境下的适应性展开进一步研究。  相似文献   

2.
支持向量机作为一种经典的分类方法被广泛应用于恒星光谱分类领域。该方法在实际应用中取得了较为理想的分类效果,但其面临无法解决多分类问题的挑战。在支持向量机的基础上,提出多类支持向量机,建立基于多类支持向量机的恒星光谱分类模型。该方法的最大优势是经过一次分类过程,可以确定多类样本的类属。SDSS DR8恒星光谱数据上的比较实验表明,本研究所提的方法较之已有多分类方法在分类性能上有一定的提升。  相似文献   

3.
支持向量机(support vector machine, SVM)具有良好的学习性能和泛化能力,因而被广泛应用于恒星光谱分类中。然而实际应用面临的数据规模往往很大,SVM便暴露出计算量大、分类速度慢等问题。为了解决上述问题,Jayadeva等提出双支持向量机(twin support vector machine, TWSVM),将计算时间减少至SVM的1/4。然后上述方法仅关注数据的全局特征,对每类数据的局部特征并未关注。鉴于此,提出基于流形模糊双支持向量机(manifold fuzzy twin support vector machine, MF-TSVM)的恒星光谱分类方法。利用流形判别分析获得数据的全局特征和局部特征,模糊隶属度函数的引入将各类数据区别对待,尽可能减少噪声点和奇异点对分类结果的影响。与C-SVM,KNN等传统分类方法在SDSS恒星光谱数据集上的比较实验表明了该方法的有效性。  相似文献   

4.
支持向量机(support vector machine, SVM)具有良好的学习性能和泛化能力, 因而被广泛应用于恒星光谱分类中。然而实际应用面临的数据规模往往很大, SVM便暴露出计算量大、分类速度慢等问题。为了解决上述问题, Jayadeva等提出双支持向量机(twin support vector machine, TWSVM), 将计算时间减少至SVM的1/4。然后上述方法仅关注数据的全局特征, 对每类数据的局部特征并未关注。鉴于此, 提出基于流形模糊双支持向量机(manifold fuzzy twin support vector machine, MF-TSVM)的恒星光谱分类方法。利用流形判别分析获得数据的全局特征和局部特征, 模糊隶属度函数的引入将各类数据区别对待, 尽可能减少噪声点和奇异点对分类结果的影响。与C-SVM, KNN等传统分类方法在SDSS恒星光谱数据集上的比较实验表明了该方法的有效性。  相似文献   

5.
数据挖掘被广泛应用于恒星光谱分类。为了提高传统光谱分类方法性能,提出熵学习机(Entropy-based Learning Machine, ELM)。在该方法中,熵用来刻画分类的不确定性。为了得到理想的分类结果,分类的不确定性应最小,基于此,可得ELM的最优化问题。ELM在处理二分类问题和稀有光谱发现等方面具有一定优势。SDSS中K型、F型、G型恒星光谱数据集上的比较实验表明:ELM在进行恒星光谱分类时,其分类性能优于k近邻(k Nearest Neighbor)和支持向量机(Support Vector Machine)等传统分类方法。  相似文献   

6.
恒星光谱分类是天文技术与方法领域一直关注的热点问题之一。随着观测设备持续运行和不断改进,人类获得的光谱数量与日俱增。这些海量光谱为人工处理带来了极大挑战。鉴于此,研究人员开始关注数据挖掘算法,并尝试对这些光谱进行数据挖掘。近年来,神经网络、自组织映射、关联规则等数据挖掘方法广泛应用于恒星光谱分类。在这些方法中,支持向量机(SVM)以其强大的学习能力和高效的分类性能而备受推崇。SVM的基本思想是试图在两类样本之间找到一个最优分类面将两类分开。SVM在求解时,通过将其最优化问题转化为具有(QP)形式的凸问题,进而得到全局最优解。尽管该方法在实际应用中表现优良,但为了进一步提高其分类能力,有的学者提出双支持向量机(TSVM)。该方法通过构造两个非平行的分类面将两类分开,每一类靠近某个分类面,而远离另一个分类面。TSVM的计算效率较之传统SVM提高近4倍,因此,自TSVM提出后便受到研究人员的持续关注,并出现若干改进算法。在恒星光谱分类中,一般分类算法都是根据历史观测光谱来建立分类模型,其中最关键的是对光谱进行人工标注,这项工作极为繁琐,且容易犯错。如何利用已标记的光谱以及部分无标签的光谱来建立分类模型显得尤为重要。因此,提出带无标签数据的双支持向量机(TSVMUD)用以实现对恒星光谱智能分类的目的。该方法首先将光谱分为训练数据集和测试数据集两部分;然后,在训练集上进行学习,得到分类依据;最后利用分类依据对测试集上的光谱进行验证。继承了双支持向量机的优势,更重要的是,在训练集上学习分类模型过程中,不仅考虑有标记的训练样本,也考虑部分未标记的样本。一方面提高了学习效率,另一方面得到更优的分类模型。在SDSS DR8恒星光谱数据集上的比较实验表明,与支持向量机SVM、双支持向量机TSVM以及K近邻(KNN)等传统分类方法相比,带无标签数据的双支持向量机TSVMUD具有更优的分类能力。然而,该方法亦存在一定的局限性,其中一大难题是其无法处理海量光谱数据。该工作将借鉴海量数据随机采样思想,利用大数据处理技术,来对所提方法在大数据环境下的适应性展开进一步研究。  相似文献   

7.
数据挖掘被广泛应用于恒星光谱分类。为了提高传统光谱分类方法性能,提出熵学习机(Entropybased Learning Machine,ELM)。在该方法中,熵用来刻画分类的不确定性。为了得到理想的分类结果,分类的不确定性应最小,基于此,可得ELM的最优化问题。ELM在处理二分类问题和稀有光谱发现等方面具有一定优势。SDSS中K型、F型、G型恒星光谱数据集上的比较实验表明:ELM在进行恒星光谱分类时,其分类性能优于k近邻(k Nearest Neighbor)和支持向量机(Support Vector Machine)等传统分类方法。  相似文献   

8.
温室蔬菜病害的发生及大面积流行严重影响设施农业的生产管理, 大大降低设施农业的经济效益。为了实现温室蔬菜病害的无损准确预测, 以黄瓜霜霉病害为例, 利用激光诱导叶绿素荧光构建光谱特征指数, 建立了温室蔬菜病害的预测模型。在试验中采用对比分析的方法, 通过对作物健康叶片接种病菌孢子, 分别采集健康、接种2 d、接种6 d和出现明显病症共4组试验样本的光谱曲线, 定性分析了荧光强度随叶片样本感染病菌孢子的变化规律;利用光谱曲线不同波段峰谷值创建了叶绿素荧光光谱指数k1=F685/F512k2=F734/F512, 根据数值的变化范围, 设定k1k2分别为20和10时可以作为判断样本出现明显病症与未出现明显病症的特征值, 其判断的准确率分别达到96%和94%;利用构建的光谱指数与样本健康状况的分类结果, 选择光谱指数F685/F512,F685-F734,F715/F612可以定性判断样本健康状况, 并选择光谱指数F685/F512,F734/F512,F685-F734,F715/F612作为建立定量分析模型的输入量, 以预测集分类准确率作为评价标准, 对比判别分析、BP神经网络、支持向量机三种数据建模方法, 结果表明支持向量机作为霜霉病害预测的建模方法, 其预测能力达到91.38%。利用激光诱导叶绿素荧光构建光谱指数方法, 研究植物病害的预测问题, 具有很好的分类和鉴别效果。  相似文献   

9.
针对目前本体构建与重构过程中数据处理效率低的问题,运用支持向量机分类及K-均值聚类的方法对本体构建数据进行处理,从文本数据中抽取关注的特定的信息,运用基于二叉树的多分类支持向量机以及支持向量机与K-均值融合的多样本聚类,总结基于分类与聚类的本体构建过程,并以离散型和连续型两种数据样本验证了方法的可行性。实验结果表明,基于数据挖掘的本体构建与重构技术具有良好的应用效果。  相似文献   

10.
基于模糊支持向量机的高光谱图像分类   总被引:1,自引:0,他引:1  
常规支持向量机应用到高光谱图像分类中有较好的分类效果,但它对训练样本内部的噪声和孤立点特别敏感,在一定程度上影响了支持向量机的分类性能,针对该问题,引入了模糊支持向量机(FSVM),并且利用灰色关联分析代替模糊隶属度的求解,将这种基于灰色关联分析的模糊支持向量机与一对多算法相结合,解决了多类高光谱图像分类问题。HYDICE高光谱图像分类结果表明,噪声和孤立点训练样本对支持向量机的影响得到了有效地抑制,相比于常规支持向量机方法,分类精度得到了明显的提高。  相似文献   

11.
马满振  郭理彬  苏奎峰 《应用声学》2017,25(10):232-235, 239
针对多类运动想象脑电信号个体差异性强和分类正确率比较低的问题,提出了一种时-空-频域相结合的脑电信号分析方法:首先利用小波包对EEG原始信号进行分解,根据EEG信号的频域分布提取出运动想象脑电节律,通过“一对多”共空间模式(CSP)算法对不同运动想象任务的脑电节律进行空间滤波提取特征;然后将特征向量输入到“一对多”模式下的支持向量机(SVM)中,并利用判断决策函数值的方法对SVM的输出结果进行融合;最后通过引入时间窗对脑电信号进行时域滤波,消除运动想象开始和结束时脑电的波动,进一步提高信号信噪比和算法的分类效果。实验结果显示:在时间窗为2s时,平均最大 系数达到了0.72,比脑机接口竞赛第一名提高了0.15,验证了该算法能够有效减小脑电信号个体差异性影响,提高多类识别正确率。  相似文献   

12.
通过对恒星光谱进行分析可以研究银河系的演化与结构等科学问题,光谱分类是恒星光谱分析的基本任务之一。提出了一种结合非参数回归与Adaboost对恒星光谱进行MK分类的方法,将恒星按光谱型和光度型进行分类,并识别其光谱型的次型。恒星光谱的光谱型及其次型代表了恒星的表面有效温度,而光度型则代表了恒星的发光强度。在同一种光谱型下,光度型反映了谱线形状细节的变化,因此光度型的分类必须在光谱型分类基础上进行。本文把光谱型的分类问题转化为对类别的回归问题,采用非参数回归方法进行恒星光谱型和光谱次型的分类;基于Adaboost方法组合一组K近邻分类器进行光度型分类,Adaboost将一组弱分类器加权组合产生一个强分类器,提升光度型的识别率。实验验证了所提出分类方法的有效性,光谱次型识别的精度达到0.22,光度型的分类正确率达到84%以上。实验还对比了两种KNN方法与Adaboost方法的光度型分类,结果表明,利用KNN方法对光度型分类精度低,而基于弱分类器KNN的Adaboost方法将识别率大幅提升。  相似文献   

13.
We use 343,747 sources from LAMOST DR5 to do star/galaxy/QSO classification with machine learning approaches. Specifically, the 312,767 spectral labeled stars (G, K, M, F, A) are used to do star classification. The photometry of u, g, r, i, z, J, and H are used as machine learning features. For star/galaxy/QSO classification, the k nearest neighbor algorithm (KNN), decision tree (DT), random forest (RF) and support vector machine (SVM) perform well. For star classification, the accuracy of RF and SVM classification are higher than the accuracy of KNN and DT. The area under receiver operating characteristic curves of the four models are approaching to 1. The accuracy, precision, recall, f_score, Matthews correlation coefficient are always greater than 0.5. The four models perform all right in predicting the nature of sources and the star label.  相似文献   

14.
纯棉与丝光棉制品是日常生活中常用的两种纤维制品,但是由于二者在物理结构和化学结构上非常相似,以至于使用一些简单的方法难以准确识别一部分纯棉与丝光棉制品。提出一种使用水含量作为扰动的二维相关光谱结合机器学习方法来对二者进行鉴别的新方法。共使用从专业机构获得的200个标准样本来设计实验对新方法进行验证,其中包括100个纯棉样本与100个丝光棉样本。对每一个样本,使用水含量作为扰动,分4次改变样本水含量并采集该水含量下样本的一维光谱,其中4次的水含量分别为20.20%,14.52%,7.77%与0%。根据四条不同的一维构造每一个样本的动态光谱,再通过二维相关算法来计算其同步二维相关光谱,从该同步二维相关光谱中使用移动窗口技术提取三组不同的分类特征,每组特征分别对应一个设计好的支持向量机(SVM)分类器。之后本文提出一种基于信息熵的多分类器融合方法,根据权值不同,将三个分类器融合为一个具有更优效果的强分类器。为了验证方法的准确性与有效性,设计了严谨的实验对方法进行验证。实验首先按照传统的从一维光谱中提取特征的方法对纯棉与丝光棉样本进行鉴别,使用两种样本各50个来进行分类模型建立,剩余的进行模型验证,分类效果最高只有76%。但是基于从二维相关光谱中提取的三组特征设计的三个支持向量机(SVM)分类器的准确率分别可以达到88%,90%,88%,最后根据提出的基于信息熵的多分类器信息融合方法将三个分类器进行融合同一可以得到92%的分类准确率,比三个基础分类器准确率都有提升。与从一维光谱中提取特征并设计分类器进行分别鉴别相比,从二维相关光谱中提取特征设计多个分类器并使用基于信息熵的多分类器信息融合方法进行分类鉴别具有更高的分类准确率。二维相关光谱将光谱信息扩展到更高的维度,将一维光谱中隐藏的折叠峰进行展开,因此具有更高的分类准确率。提出的方法是一种快速准确鉴别纯棉与丝光棉制品的新方法。  相似文献   

15.
恒星光谱自动分类是研究恒星光谱的基础内容,快速、准确自动识别、分类恒星光谱可提高搜寻特殊天体速度,对天文学研究有重大意义。目前我国大型巡天项目LAMOST每年发布数百万条光谱数据,对海量恒星光谱进行快速、准确自动识别与分类研究已成为天文学大数据分析与处理领域的研究热点之一。针对恒星光谱自动分类问题,提出一种基于卷积神经网络(CNN)的K和F型恒星光谱分类方法,并与支持向量机(SVM)、误差反向传播算法(BP)对比,采用交叉验证方法验证分类器性能。与传统方法相比CNN具有权值共享,减少模型学习参数;可直接对训练数据自动进行特征提取等优点。实验采用Tensorflow深度学习框架,Python3.5编程环境。K和F恒星光谱数据集采用国家天文台提供的LAMOST DR3数据。截取每条光谱波长范围为3 500~7 500 部分,对光谱均匀采样生成数据集样本,采用min-max归一化方法对数据集样本进行归一化处理。CNN结构包括:输入层,卷积层C1,池化层S1,卷积层C2,池化层S2,卷积层C3,池化层S3,全连接层,输出层。输入层为一批K和F型恒星光谱相同的3 700个波长点处流量值。C1层设有10个大小为1×3步长为1的卷积核。S1层采用最大池化方法,采样窗口大小为1×2,无重叠采样,生成10张特征图,与C1层特征图数量相同,大小为C1层特征图的二分之一。C2层设有20个大小为1×2步长为1的卷积核,输出20张特征图。S2层对C2层20张特征图下采样输出20张特征图。C3层设有30个大小为1×3步长为1的卷积核,输出30张特征图。S3层对C3层30张特征图下采样输出30张特征图。全连接层神经元个数设置为50,每个神经元都与S3层的所有神经元连接。输出层神经元个数设置为2,输出分类结果。卷积层激活函数采用ReLU函数,输出层激活函数采用softmax函数。对比算法SVM类型为C-SVC,核函数采用径向基函数,BP算法设有3个隐藏层,每个隐藏层设有20,40和20个神经元。数据集分为训练数据和测试数据,将训练数据的40%,60%,80%和100%作为5个训练集,测试数据作为测试集。分别将5个训练集放入模型中训练,共迭代8 000次,每次训练好的模型用测试集进行验证。对比实验采用100%的训练数据作为训练集,测试数据作为测试集。采用精确率、召回率、F-score、准确率四个评价指标评价模型性能,对实验结果进行详细分析。分析结果表明CNN算法可对K和F型恒星光谱快速自动分类和筛选,训练集数据量越大,模型泛化能力越强,分类准确率越高。对比实验结果表明采用CNN算法对K和F型恒星光谱自动分类较传统机器学习SVM和BP算法自动分类准确率更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号