首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physical and electrical properties of sputtered deposited Y2O3 films on NH4OH treated n-GaAs substrate are investigated. The as-deposited films and interfacial layer formation have been analyzed by using X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectroscopy (SIMS). It is found that directly deposited Y2O3 on n-GaAs exhibits excellent electrical properties with low frequency dispersion (<5%), hysteresis voltage (0.24 V), and interface trap density (3 × 1012 eV−1 cm−2). The results show that the deposition of Y2O3 on n-GaAs can be an effective way to improve the interface quality by the suppression on native oxides formation, especially arsenic oxide which causes Fermi level pinning at high-k/GaAs interface. The Al/Y2O3/n-GaAs stack with an equivalent oxide thickness (EOT) of 2.1 nm shows a leakage current density of 3.6 × 10−6 A cm−2 at a VFB of 1 V. While the low-field leakage current conduction mechanism has been found to be dominated by the Schottky emission, Poole-Frenkel emission takes over at high electric fields. The energy band alignment of Y2O3 films on n-GaAs substrate is extracted from detailed XPS measurements. The valence and conduction band offsets at Y2O3/n-GaAs interfaces are found to be 2.14 and 2.21 eV, respectively.  相似文献   

2.
Ping SuWen-Chen Zheng 《Optik》2012,123(22):2025-2027
The crystal field energy levels of laser crystal Gd3Ga5O12: Nd3+ are calculated using the diagonalization (of energy matrix) method. From the calculations, the 93 observed crystal field energy levels are explained reasonably and the root-mean-square (r.m.s.) deviation σ(≈25.6 cm−1) and the scalar crystal-field strength parameter Nv (≈3847 cm−1) are obtained. The results are discussed.  相似文献   

3.
Thin films of ZnWO4 and CdWO4 were prepared by spray pyrolysis and the structural, optical, and luminescence properties were investigated. Both ZnWO4 and CdWO4 thin films showed a broad blue-green emission band. The broad band of ZnWO4 films was centered at 495 nm (2.51 eV) consisted of three bands at 444 nm (2.80 eV), 495 nm (2.51 eV) and 540 nm (2.30 eV). The broad band of CdWO4 films at 495 nm (2.51 eV) could be decomposed to three bands at 444 nm (2.80 eV), 495 nm (2.51 eV) and 545 nm (2.28 eV). These results are consistent with emission from the WO66− molecular complex. The luminance and efficiency for ZnWO4 film at 5 kV and 57 μA/cm2 were 48 cd/m2 and 0.22 lm/w, respectively, and for CdWO4 film the values were 420 cd/m2 and 1.9 lm/w.  相似文献   

4.
The time-dependent degradation of the oxygen exchange kinetics of the solid oxide fuel cell cathode material La0.58Sr0.4Co0.2Fe0.8O3 − δ (LSCF) is investigated at 600 °C. Special emphasis is placed on systematic long-term dc-conductivity relaxation measurements (t > 1000 h) in dry as well as in humidified atmospheres in order to obtain representative trends for the application of LSCF in intermediate-temperature SOFCs. The determination of the chemical surface exchange coefficient kchem of oxygen is combined with investigations of the elemental surface compositions and depth profiles of fresh and degraded samples by X-ray photoelectron spectroscopy (XPS), providing further insight into the mechanisms of degradation. The slow decrease of kchem by a factor of 2 during exposure of the sample to a dry O2-Ar reference atmosphere for 1000 h at 600 °C can be ascribed to an enrichment of La and Sr in correlation with an elevated oxygen concentration within about 30-35 nm depth. The interpretation of the XPS core level spectra indicates the formation of SrO and La2O3 secondary phases in this zone. The subsequent treatment in a humidified atmosphere for 1000 h results in a pronounced initial decrease of kchem by an additional factor of 10, followed by a time dependent decay of about 15% kh− 1. A Sr-rich silicate layer of about 10 nm thickness is identified by XPS as the major cause of the degradation in humidified atmosphere. The evidence of Si-poisoning over the whole sample surface could also be confirmed by post-test SEM analysis. In addition, indications of a re-structuring of the sample surface during the degradation are shown. These results indicate, that with LSCF as a cathode in ambient (humid) air in SOFC stacks containing various Si-sources, such as glass or glass-ceramic seals, and thermal insulation materials a significant decrease of the surface oxygen exchange coefficient can occur, even at temperatures as low as 600 °C. In order to prevent a severe Si-induced degradation, dry air should be used as an oxidant. However, even in dry atmosphere a minor decrease of kchem can occur during long-term operation due to changes in the relative cation and oxygen content at the surface.  相似文献   

5.
Gold (Au) diffusion in superconducting Bi1.8Pb0.35Sr1.9Ca2.1Cu3Oy was investigated over the temperature range 500-800 °C by the energy dispersive X-ray fluorescence (EDXRF) technique. It is found that the Au diffusion coefficient decreases as the diffusion-annealing temperature decreases. The temperature dependences of Au diffusion coefficient in grains and over grain boundaries are described by the relations D1=6.7×10−5exp(−1.19 eV/kBT) and D2=9.7×10−4exp(−1.09 eV/kBT), respectively. The diffusion doping of Bi-2223 by Au causes a significant increase of the lattice parameter c by about 0.19%. For the Au-diffused samples, dc electrical resistivity and transport critical current density measurements indicated the critical transition temperature increased from 100 to 104 K and the critical current density increased from 40 to 125 A cm−2, in comparison with those of undoped samples. From scanning electron microscope (SEM) and X-ray diffraction (XRD) measurements it is observed that Au doping of the sample also improved the surface morphology and increased the ratio of the high-Tc phase to the low-Tc phase. The possible reasons for the observed improvement in microstructure and superconducting properties of the samples due to Au diffusion are also discussed.  相似文献   

6.
Indium tin oxide (ITO) and titanium dioxide (TiO2) single layer and double layer ITO/TiO2 films were prepared using reactive pulsed laser ablation deposition (RPLAD) with an ArF excimer laser for applications in dye-sensitized solar cells (DSSCs). The films were deposited on SiO2 substrates either at room temperatures (RT) or heated to 200-400 °C. Under optimized conditions, transmission of ITO films in the visible (vis) range was above 89% for films produced at RT and 93% for the ones deposited at higher temperatures. Increasing the substrate temperature from RT to 400 °C enhances the transmission of TiO2 films in the vis-NIR from about 70% to 92%. High transmission (≈90%) was observed for the double layer ITO/TiO2 with a transmission cut-off above 900 nm. From the transmission data, the energies gaps (Eg), as well as the refractive indexes (n) for the films were estimated. n ≈ 2.03 and 2.04, respectively for ITO films and TiO2 film deposited at 400 °C in the visible region. Post-annealing of the TiO2 films for 3 h at 300 and 500 °C was performed to enhance n. The refractive index of the TiO2 films increases with the post-annealing temperature. The direct band gap is 3.6, 3.74 and 3.82 eV for ITO films deposited at RT, 200, and 400 °C, respectively. The TiO2 films present a direct band gap of 3.51 and 3.37 eV for as deposited TiO2 films and when annealed at 400 °C, respectively. There is a shift of about 0.1 eV between ITO and ITO/TiO2 films deposited at 200 °C. The shift decreases by half when the TiO2 film was deposited at 400 °C. Post-annealing was also performed on double layer ITO/TiO2.  相似文献   

7.
In this work, we report the formation of CuInS2 thin films on glass substrates by heating chemically deposited multilayers of copper sulfide (CuS) and indium sulfide (In2S3) at 300 and 350 °C in nitrogen atmosphere at 10 Torr. CIS thin films were prepared by varying the CuS layer thickness in the multilayers with indium sulfide. The XRD analysis showed that the crystallographic structure of the CuInS2 (JCPDS 27-0159) is present on the deposited films. From the optical analysis it was estimated the band gap value for the CIS film (1.49 eV). The electrical conductivity varies from 3 × 10−8 to 3 Ω−1 cm−1 depending on the thickness of the CuS film. CIS films showed p-type conductivity.  相似文献   

8.
Highly conducting films of p-type CuCrO2 are attractive as hole-injectors in oxide-based light emitters. In this paper, we report on the development of dry etch patterning of CuCrO2 thin films. The only plasma chemistry that provided some chemical enhancement was Cl2/Ar under inductively coupled plasma conditions. Etch rates of ∼500 Å min−1 were obtained at chuck voltages around −300 V and moderate source powers. In all cases, the etched surface morphologies were improved relative to un-etched control samples due to the smoothing effect of the physical component of the etching. The threshold ion energy for the onset of etching was determined to be 34 eV. Very low concentrations (≤1 at.%) of residual chlorine were detected on the etched surfaces but could be removed by simple water rinsing.  相似文献   

9.
Structural, optical and electrical properties of CuIn5S8 thin films grown by thermal evaporation have been studied relating the effects of substrate heating conditions of these properties. The CuIn5S8 thin films were carried out at substrate temperatures in the temperature range 100-300 °C. The effects of heated substrate on their physico-chemical properties were investigated using X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), optical transmission and hot probe method. X-ray diffraction revealed that the films are strong preferred orientation along the (3 1 1) plane upon substrate temperature 200 °C and amorphous for the substrate temperatures below 200 °C. No secondary phases are observed for all the films. The composition is greatly affected by heated substrate. From the optical transmission and reflection, an important absorption coefficient exceeds 105 cm−1 at 800 nm was found. As increasing the substrate temperature, the optical energy band gap decreases from 1.70 eV for the unheated films to 1.25 eV for the deposited films at 300 °C. It was found that CuIn5S8 thin film is an n-type semiconductor at 250° C.  相似文献   

10.
The effects of vanadium(V) doping into SrBi4Ti4O15 (SBTi) thin films on the structure, ferroelectric, leakage current, dielectric, and fatigue properties have been studied. X-ray diffraction result showed that the crystal structure of the SBTi thin films with and without vanadium is the same. Enhanced ferroelectricity was observed in the V-doped SrBi4Ti4O15 (SrBi4−x/3Ti4−xVxO15, SBTiV-x (x = 0.03, 0.06, and 0.09)) thin films compared to the pure SrBi4Ti4O15 thin film. The values of remnant polarization (2Pr) and coercive field (2Ec) of the SBTiV-0.09 thin film capacitor were 40.9 μC/cm2 and 105.6 kV/cm at an applied electric field of 187.5 kV/cm, respectively. The 2Pr value is over five times larger than that of the pure SBTi thin film capacitor. At 100 kHz, the values of dielectric constant and dielectric loss were 449 and 0.04, and 214 and 0.06 for the SBTiV-0.09 and the pure SBTi thin film capacitors, respectively. The leakage current density of the SBTiV-0.09 thin film capacitor measured at 100 kV/cm was 6.8 × 10−9 A/cm2, which is more than two and a half orders of magnitude lower than that of the pure SBTi thin film capacitor. Furthermore, the SBTiV-0.09 thin film exhibited good fatigue endurance up to 1010 switching cycles. The improved electrical properties may be related to the reduction of internal defects such as bismuth and oxygen vacancies with changes in the grain size by doping of vanadium into SBTi.  相似文献   

11.
Mn3O4 thin films have been prepared by novel chemical successive ionic layer adsorption and reaction (SILAR) method. Further these films were characterized for their structural, morphological and optical properties by means of X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), field emission scanning electron microscopy (FESEM), wettability test and optical absorption studies. The XRD pattern showed that the Mn3O4 films exhibit tetragonal hausmannite structure. Formation of manganese oxide compound was confirmed from FTIR studies. The optical absorption showed existence of direct optical band gap of energy 2.30 eV. Mn3O4 film surface showed hydrophilic nature with water contact angle of 55°. The supercapacitive properties of Mn3O4 thin film investigated in 1 M Na2SO4 electrolyte showed maximum supercapacitance of 314 F g−1 at scan rate 5 mV s−1.  相似文献   

12.
In this work we report the optical, morphological and structural characterization and diode application of Cr2O3 nanofilms grown on p-Si substrates by spin coating and annealing process. X-ray diffraction (XRD), non-contact mode atomic force microscopy (NC-AFM), ultraviolet-visible (UV-vis) spectroscopy and photoluminescence (PL) spectroscopy were used for characterization of nanofilms. For Cr2O3 nanofilms, the average particle size determined from XRD and NC-AFM measurements was approximately 70 nm. Structure analyses of nanofilms demonstrate that the single phase Cr2O3 on silicon substrate is of high a crystalline structure with a dominant in hexagonal (1 1 0) orientation. The morphologic analysis of the films indicates that the films formed from hexagonal nanoparticles are with low roughness and uniform. UV-vis absorption measurements indicate that the band gap of the Cr2O3 film is 3.08 eV. The PL measurement shows that the Cr2O3 nanofilm has a strong and narrow ultraviolet emission, which facilitates potential applications in future photoelectric nanodevices. Au/Cr2O3/p-Si metal/interlayer/semiconductor (MIS) diodes were fabricated for investigation of the electronic properties such as current-voltage and capacitance-voltage. Ideality factor and barrier height for Au//Cr2O3/p-Si diode were calculated as 2.15 eV and 0.74 eV, respectively. Also, interfacial state properties of the MIS diode were determined. The interface-state density of the MIS diode was found to vary from 2.90 × 1013 eV−1 cm−2 to 8.45 × 1012 eV−1 cm−2.  相似文献   

13.
Kinetics and mechanisms for reactions of OH with methanol and ethanol have been investigated at the CCSD(T)/6-311 + G(3df2p)//MP2/6-311 + G(3df2p) level of theory. The total and individual rate constants, and product branching ratios for the reactions have been computed in the temperature range 200-3000 K with variational transition state theory by including the effects of multiple reflections above the wells of their pre-reaction complexes, quantum-mechanical tunneling and hindered internal rotations. The predicted results can be represented by the expressions k1 = 4.65 × 10−20 × T2.68 exp(414/T) and k2 = 9.11 × 10−20 × T2.58 exp(748/T) cm3 molecule−1 s−1 for the CH3OH and C2H5OH reactions, respectively. These results are in reasonable agreements with available experimental data except that of OH + C2H5OH in the high temperature range. The former reaction produces 96-89% of the H2O + CH2OH products, whereas the latter process produces 98-70% of H2O + CH3CHOH and 2-21% of the H2O + CH2CH2OH products in the temperature range computed (200-3000 K).  相似文献   

14.
The kinetics and mechanisms of the reactions of cyanomidyl radical (HNCN) with oxygen atoms and molecules have been investigated by ab initio calculations with rate constant prediction. The doublet and quartet state potential energy surfaces (PESs) of the two reactions have been calculated by single-point calculations at the CCSD(T)/6-311+G(3df, 2p) level based on geometries optimized at the CCSD/6-311++G(d, p) level. The rate constants for various product channels of the two reactions in the temperature range of 300-3000 K are predicted by variational transition state and RRKM theories. The predicted total rate constants of the O(3P) + HNCN reaction at 760 Torr Ar pressure can be represented by the expressions ktotal (O + HNCN) = 3.12 × 10−10 × T−0.05 exp (−37/T) cm3 molecule−1 s−1 at T = 300-3000 K. The branching ratios of primary channels of the O(3P) + HNCN are predicted: k1 for producing the NO + CNH accounts for 0.72-0.64, k2 + k9 for producing the 3NH + NCO accounts for 0.27-0.32, and k6 for producing the CN + HNO accounts for 0.01-0.07 in the temperature range studied. Meanwhile, the predicted total rate constants of the O2 + HNCN reaction at 760 Torr Ar pressure can be represented by the expression, ktotal(O2 + HNCN) = 2.10 × 10−16 × T1.28exp (−12200/T) cm3 molecule−1 s−1 at T = 300-3000 K. The predicted branching ratio for k11 + k13 producing HO2 + 3NCN as the primary products accounts for 0.98-1.00 in the temperature range studied.  相似文献   

15.
We have fabricated exchange-biased Co/Pt layers ((0.3 nm/1.5 nm)×3) on (0 0 1)-oriented Cr2O3 thin films. The multilayered films showed extremely smooth surfaces and interfaces with root mean square roughness of ≈0.3 nm for 10 μm×10 μm area. The Cr2O3 films display sufficient insulation with a relative low leakage current (1.17×10−2 A/cm2 at 380 MV/m) at room temperature which allowed us to apply electric field as high as 77 MV/m. We find that the sign of the exchange bias and the shape of the hysteresis loops of the out-of-plane magnetized Co/Pt layers can be delicately controlled by adjusting the magnetic field cooling process through the Néel temperature of Cr2O3. No clear evidence of the effect of electric field and the electric field cooling was detected on the exchange bias for fields as high as 77 MV/m. We place the upper bound of the shift in exchange bias field due to electric field cooling to be 5 Oe at 250 K.  相似文献   

16.
The impact of the ZrO2/La2O3 film thickness ratio and the post deposition annealing in the temperature range between 400 °C and 600 °C on the electrical properties of ultrathin ZrO2/La2O3 high-k dielectrics grown by atomic layer deposition on (1 0 0) germanium is investigated. As-deposited stacks have a relative dielectric constant of 24 which is increased to a value of 35 after annealing at 500 °C due to the stabilization of tetragonal/cubic ZrO2 phases. This effect depends on the absolute thickness of ZrO2 within the dielectric stack and is limited due to possible interfacial reactions at the oxide/Ge interface. We show that adequate processing leads to very high-k dielectrics with EOT values below 1 nm, leakage current densities in the range of 0.01 A/cm2, and interface trap densities in the range of 2-5 × 1012 eV−1 cm−2.  相似文献   

17.
Sm2S3 thin films were prepared on Si (1 0 0) substrates using SmCl3 and Na2S2O3 as precursors by liquid phase deposition method on self-assembled monolayers. The influence of the molar concentration ratio of [S2O32−]/[Sm3+] on the phase compositions, surface morphologies and optical properties of the as-deposited films were investigated. The as-deposited Sm2S3 thin films were characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), ultraviolet-visible (UV-vis) and photoluminescence spectrum (PL). Results show that it is important to control the [S2O32−]/[Sm3+] during the deposition process and monophase Sm2S3 thin films with orientation growth along (0 1 1) direction can be achieved when [S2O32−]/[Sm3+] = 2.0, pH 3.0, with citric acid as a template agent. The as-deposited thin films exhibit a dense and crystalline surface morphology. Good transmittance in the visible spectrum and excellent absorbency of ultraviolet light of the thin films are observed, and the band gap of the thin films first decrease and then increase with the increase of the [S2O32−]/[Sm3+]. The as-deposited thin films also exhibit red photoluminescence properties under visible light excitation. With the increase of the [S2O32−]/[Sm3+] in the deposition solution, the PL properties of Sm2S3 thin films are obviously improved.  相似文献   

18.
Sn1−xMnxO2 (x=0.01-0.05) thin films were synthesized on quartz substrate using an inexpensive ultrasonic spray pyrolysis technique. The influence of doping concentration and substrate temperature on structural and magnetic properties of Sn1−xMnxO2 thin films was systematically investigated. X-ray diffraction (XRD) studies of these films reflect that the Mn3+ ions have substituted Sn4+ ions without changing the tetragonal rutile structure of pure SnO2. A linear increase in c-axis lattice constant has been observed with corresponding increase in Mn concentration. No impurity phase was detected in XRD patterns even after doping 5 at% of Mn. A systematic change in magnetic behavior from ferromagnetic to paramagnetic was observed with increase in substrate temperature from 500 to 700 °C for Sn1−xMnxO2 (x=0.01) films. Magnetic studies reveal room-temperature ferromagnetism (RTFM) with 3.61×10−4 emu saturation magnetization and 92 Oe coercivity in case of Sn1−xMnxO2 (x=0.01) films deposited at 500 °C. However, paramagnetic behavior was observed for the films deposited at a higher substrate temperature of 700 °C. The presence of room-temperature ferromagnetism in these films was observed to have an intrinsic origin and could be obtained by controlling the substrate temperature and Mn doping concentration.  相似文献   

19.
The desorption of NO molecules from a thick C60 film is reported. A thermal desorption spectrum indicates two adsorption sites with binding energies of Eb = 0.30 eV and 0.55 eV. For laser desorption the fullerene surface is exposed to NO and excited by 7 ns UV laser pulses. Desorbing NO molecules are recorded state selectively as well as time resolved. The time-of-flight measurement indicates three different desorption pathways. A fast channel shows rovibronic temperatures of Trot(v″ = 0) = 370 K, Trot(v″ = 1) = 390 K and Tvib = 610 K as well as strong rotational-translational coupling. The desorption yield for the fast channel increases linearly with pulse energy with a desorption cross section of σ = (5.1 ± 0.9) × 10−17 cm2. Dominating the signal for small J″ values is a slow channel with low rotational and translational temperatures of about 110 K. We assign this peak to a laser-induced thermal desorption. For large pump-probe delays the data deviate from the Maxwellian flux distribution and a third channel appears with extremely late arrival times.  相似文献   

20.
La2−xSmxCuO4+δ with the Nd2CuO4 structure was synthesized by precipitation from fused alkaline hydroxide, CsOH, at 400 °C. The as-sintered polycrystalline samples showed no diamagnetic signal, but after post-annealing in vacuum of ≈10−8 atm at 650–700 °C, the samples with = 0.1 and 0.3 exhibited superconductivity at Tc on = 25 K. The volume fraction of the superconducting phase estimated from the slope of the Zero-Field-Cooled magnetization data was over 30% for = 0.3, which confirmed that the La1.7Sm0.3CuO4+δ is a bulk superconductor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号