首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
本文提出了同位网格上的不可压流动压力修正算法,其中压力修正值由压力方程所求得。设计了分离式的动量插值方法,有效地避免了松弛因子对计算结果的影响和不合理压力场的出现。提出了构造压力方程的反欠松弛方法,该方法建立了稳定和加速计算收敛的一般途径。对经典算例的计算得到了满意的结果。  相似文献   

2.
针对一维双流体模型,通过推导双流体模型的压力修正方程,及相含率修正方程,将原本应用于单相不可压流动的压力修正系列算法推广至双流体模型求解,提出双流体模型的压力修正算法.在离散过程中运用高阶有界格式,在保证二阶以上精度的基础上克服了由相含率分布的阶跃所造成的数值结果非物理震荡.与公开发表算例进行对比,验证求解的可靠性.  相似文献   

3.
 利用大涡模拟对化学氧碘激光器内的亚跨超音速混合过程进行模拟分析,其结果表明了大涡模拟对这种低压、低密度、亚跨超音速及夹杂多种介质的化学流场的可执行性。与传统的雷诺平均仿真结果相比较,大涡模拟能掌握更多的流场细节数据,能够对混合过程进行精准地判断和分析。在此基础上,提出了碘流反向45°入流的设计方案以增强混合程度,计算表明采用此种方案在相应出光面上平均小信号增益系数提高了5%。  相似文献   

4.
以压力为主变量求解喷管内的气体流动   总被引:1,自引:0,他引:1  
一、引言 以压力为主变量求解气体流动问题的计算方法,早在七十年代,Hirt就证明是一种可有效地用于全马赫数的流动问题。但是由于一些技术上的困难,以压力为主变量的方法主要限于求解不可压的低速流动问题。本文将作者原有的非正交坐标下的,以压力为主变量求解不可压缩流动问题的计算方法和程序进行了改进。通过在动量方程中采用混合张量的形式而提高了计算的精度和稳定性,并通过在压力修正方程中隐式地引入密度的影响而将计算方法推广到用于求解可压缩流动问题。采用这种方法对两种喷管内的流动进行了计算,并将计算结果与实验结果进行了比较,结果是令人满意的。  相似文献   

5.
过去研制一种新叶型需要做大量实验以确定其安装角、t/b(栅距/弦长)及出口几何角的使用范围,在可使用范围内还需要确定叶栅的攻角特性。这些在热力透平机械设计过程中是不可缺少的。随着计算机的发展及叶轮机械计算流体动力学的进步,人们已经可以通过主要是数值计算的方法来获得这些特性。本文给出了分析叶栅内二维流动特性的一种数值计算方祛。作者采用压力修正TVD格式解雷诺平均的N-S方程组,壁面的湍流效应利用低雷诺数湍流模型模拟。运用本文方法计算了跨音及亚音叶栅内的湍流流动,并获得了某新叶型的使用范围及攻角特性。  相似文献   

6.
本文主要针对在蒸汽质量流率400~900 kg·m~(-2).s~(-1)、过冷水温度20~70℃范围内,超音速和音速蒸汽浸没射流中凝结压力振荡的第二主频进行了实验研究。研究结果表明:对于不同设计压比的超音速喷嘴,第二主频均随冷却水温度的升高和蒸汽质量流率的增大而逐渐减小。同时,本文在音速喷嘴第二主频的实验关联式基础上加入设计压比修正,拟合得到超音速喷嘴第二主频实验关联式,其计算值与实验值误差在士16%之内。  相似文献   

7.
热声压力波放大器的湍流模型及实验验证   总被引:2,自引:0,他引:2  
热声压力波放大器是一种利用声学特性将压力波幅值进行放大的一种装置,它主要用来连接热声发动机和其驱动的制冷机,增大制冷机的驱动压比.由于声学压力波放大器内的压力幅值通常较大,流动速度也非常大,所以用线性热声理论难以对其进行准确的计算.本文通过对线性热声理论进行修正,获得了热声压力波放大器内湍流流动的修正方法,并对该修正方法进行了实验验证.研究结果表明,通过修正后的理论模型可以对热声压力波放大器进行较为准确的计算.该计算模型预计在其它的一些交变流动系统中也具有一定的适用性.  相似文献   

8.
朱祥德  陈春刚  肖锋 《计算物理》2010,27(3):342-352
基于多矩VSIAM3格式及浸入边界法,提出一套在复杂计算区域内求解不可压缩流动的数值格式.不可压N-S方程使用VSIAM3格式进行离散,引入浸入边界法处理复杂、移动边界,使用虚拟网格方法计算动量方程修正项,同时还考虑了对连续方程的修正.使用标准算例对数值模式进行验证.  相似文献   

9.
本文用谱方法对三维槽道不可压湍流反应流动进行了直接模拟,用直接模拟数据对大涡模拟亚网格质量流和燃烧模型进行了检验,结果发现,引入壁面阻尼修正的模型与精确值的符合比较好.  相似文献   

10.
可压缩流动离散涡方法   总被引:1,自引:0,他引:1  
推导了可压缩流动旋涡动力学基本方程,并分析了其基本性质。如同不可压流动,在可压缩流动中旋涡同样具有场与物质两重特征。得出了可压缩流中的旋涡诱导速度公式,对Biot-Savart方程进行了可压缩修正。基于Lagrangian框架下的粒子方法,求解可压缩流中的胀量项,从而用离散涡模型求解了非定常、不稳定、可压缩流场。数值实验验证了提议的计算方法有效性。并分析了可压缩流动中旋涡运动的特征,与不可压流动的差别。  相似文献   

11.
An integral method is developed to solve the inverse problem of determining the oscillatory heat release distribution from the knowledge of the acoustic pressure field within a combustor. Unlike earlier approaches, in which the problem is formulated in terms of Fredholm integral equation, the inverse problem is reformulated in terms of Volterra integral equation. This reformulation, valid for low Mach numbers (M2 < 1), facilitates the recovery of heat release at all frequencies. The resulting Volterra integral equation is solved using both direct numerical method and implicit least-squares method. The results show that the implicit least-squares method is superior to the direct numerical method and yields accurate determination of heat release at all frequencies.  相似文献   

12.
A new finite volume-based numerical algorithm for predicting incompressible and compressible multi-phase flow phenomena is presented. The technique is equally applicable in the subsonic, transonic, and supersonic regimes. The method is formulated on a non-orthogonal coordinate system in collocated primitive variables. Pressure is selected as a dependent variable in preference to density because changes in pressure are significant at all speeds as opposed to variations in density, which become very small at low Mach numbers. The pressure equation is derived from overall mass conservation. The performance of the new method is assessed by solving the following two-dimensional two-phase flow problems: (i) incompressible turbulent bubbly flow in a pipe, (ii) incompressible turbulent air–particle flow in a pipe, (iii) compressible dilute gas–solid flow over a flat plate, and (iv) compressible dusty flow in a converging diverging nozzle. Predictions are shown to be in excellent agreement with published numerical and/or experimental data.  相似文献   

13.
A pressure based, iterative finite volume method is developed for calculation of compressible, viscous, heat conductive gas flows at all speeds. The method does not need the use of under-relaxation coefficient in order to ensure a convergence of the iterative process. The method is derived from a general form of system of equations describing the motion of compressible, viscous gas. An emphasis is done on the calculation of gaseous microfluidic problems. A fast transient process of gas wave propagation in a two-dimensional microchannel is used as a benchmark problem. The results obtained by using the new method are compared with the numerical solution obtained by using SIMPLE (iterative) and PISO (non-iterative) methods. It is shown that the new iterative method is faster than SIMPLE. For the considered problem the new method is slightly faster than PISO as well. Calculated are also some typical microfluidic subsonic and supersonic flows, and the Rayleigh–Bénard convection of a rarefied gas in continuum limit. The numerical results are compared with other analytical and numerical solutions.  相似文献   

14.
The propagation of one-dimensional detonations in hydrogen–air mixtures is investigated numerically by solving the one-dimensional Euler equations with detailed finite-rate chemistry. The numerical method is based on a second-order spatially accurate total-variation-diminishing scheme and a point implicit time marching algorithm. The hydrogen–air combustion is modelled with a 9-species, 19-step reaction mechanism. A multi-level, dynamically adaptive grid is utilized, in order to resolve the structure of the detonation. Parametric studies for an equivalence ratio range of 0.4–2.0, initial pressure range of 0.2–0.8 bar and different degrees of detonation overdrive demonstrate that the detonation is unstable for low degrees of overdrive, but the dynamics of wave propagation varies with fuel–air equivalence ratio and pressure. For equivalence ratios less than approximately 1.2 and for all pressures, the detonation exhibits a short-period oscillatory mode, characterized by high-frequency, low-amplitude waves. Richer mixtures exhibit a period-doubled bifurcation that depends on the initial pressure. Parametric studies over a degree of overdrive range of 1.0–1.2 for stoichiometric mixtures at 0.42 bar initial pressure indicate that stable detonation wave propagation is obtained at the high end of this range. For degrees of overdrive close to one, the detonation wave exhibits a low-frequency mode characterized by large fluctuations in the detonation wave speed. The McVey–Toong short-period wave-interaction theory is in qualitative agreement with the numerical simulations; however, the frequencies obtained from their theory are much higher, especially for near-stoichiometric mixtures at high pressure. Modification of this theory to account for the finite heat-release time significantly improves agreement with the numerically computed frequency over the entire equivalence ratio and pressure ranges.  相似文献   

15.
A method for fast numerical simulation of high-intensity focused ultrasound beams is derived. The method is based on the frequency-domain representation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, and assumes for each harmonic a Gaussian transverse pressure distribution at all distances from the transducer face. The beamwidths of the harmonics are constrained to vary inversely with the square root of the harmonic number, and as such this method may be viewed as an extension of a quasilinear approximation. The technique is capable of determining pressure or intensity fields of moderately nonlinear high-intensity focused ultrasound beams in water or biological tissue, usually requiring less than a minute of computer time on a modern workstation. Moreover, this method is particularly well suited to high-gain simulations since, unlike traditional finite-difference methods, it is not subject to resolution limitations in the transverse direction. Results are shown to be in reasonable agreement with numerical solutions of the full KZK equation in both tissue and water for moderately nonlinear beams.  相似文献   

16.
针对匀加速运动点声源的声场特性与其运动状态密切相关这一问题,提出匀加速直线运动状态下点声源的声场计算方法。利用此方法建立了匀加速直线运动时点声源的声压模型,对模型中的关键参数声矢量R进行数值解析,并对声压进行数值分析仿真,得出匀加速直线运动时固定接收点的声压数值计算方法。用此方法对固定接收点位置的匀加速点声源声压进行声场建模,结果表明:在声源接近接收者一定距离以后,声压明显增大;在此距离之外,距离对声压的影响不大。  相似文献   

17.
王言金  张树道  李华  周海兵 《物理学报》2016,65(10):106401-106401
Jones-Wilkins-Lee (JWL)状态方程是一种不显含化学反应、由实验方法确定参数的半经验状态方程, 能比较精确地描述爆轰产物的膨胀驱动做功过程. 在JWL状态方程中有多个未知(不确定)参数需要确定. 传统的确定JWL状态方程参数的方法是“调参数”, 人为因素影响较大, 无法给出参数的不确定性信息. 本文利用贝叶斯分析方法研究了炸药的不确定参数, 该方法能够基于以往的认识、实验和模拟数据标定(calibration)不确定参数. 在本文结果中, 不确定参数的后验分布均值与文献结果相符合, 基于参数标定结果的数值模拟90%置信区间完全包含实验数据. 数值标定结果说明贝叶斯参数标定适用于确定样品炸药的JWL状态方程参数. 特别是, 在本文JWL状态方程参数标定过程中极大地减少了人为因素的影响.  相似文献   

18.
张佳  程时清  曾杨  张满  于海洋 《计算物理》2021,38(3):324-332
建立考虑聚合物剪切变稀特性的聚驱试井数学模型,基于矩形网格和井筒周围径向加密的复合网格。采用有限体积方法求得数值解,将数值解与叠加原理得到的注聚井停注压降进行对比。结果表明:叠加原理计算得到的注聚井关井井底压力值远低于数值解,说明叠加原理不能用于聚合物驱试井解释。在实测注聚井压降资料解释中,叠加原理得到的渗透率明显偏低,进一步证明了叠加原理不适合非线性聚驱试井模型,数值方法更加适用于聚驱试井解释。研究结论适用于类似的非线性试井问题。  相似文献   

19.
In the standard approach for simulating fluid–structure interaction problems the solution of the set of equations for solids provides the three displacement components while the solution of equations for fluids provides the three velocity components and pressure. In the present paper a novel reformulation of the elastodynamic equations for Hookean solids is proposed so that they contain the same unknowns as the Navier–Stokes equations, namely velocities and pressure. A separate equation for pressure correction is derived from the constitutive equation of the solid material. The system of equations for both media is discretised using the same method (finite volume on collocated grids) and the same iterative technique (SIMPLE algorithm) is employed for the pressure–velocity coupling. With this approach, the continuity of the velocity field at the interface is automatically satisfied. A special pressure correction procedure that enforces the compatibility of stresses at the interface is also developed. The new method is employed for the prediction of pressure wave propagation in an elastic tube. Computations were carried out with different meshes and time steps and compared with available analytic solutions as well as with numerical results obtained using the Flügge equations that describe the deformation of thin shells. For all cases examined the method showed very good performance.  相似文献   

20.
In this study, aeroelastic analysis of a truncated conical shell subjected to the external supersonic airflow is carried out. The structural model is based on a combination of linear Sanders thin shell theory and the classic finite element method. Linearized first-order potential (piston) theory with the curvature correction term is coupled with the structural model to account for pressure loading. The influence of stress stiffening due to internal or external pressure and axial compression is also taken into account. The fluid-filled effect is considered as a velocity potential variable at each node of the shell elements at the fluid-structure interface in terms of nodal elastic displacements. Aeroelastic equations using the hybrid finite element formulation are derived and solved numerically. The results are validated using numerical and theoretical data available in the literature. The analysis is accomplished for conical shells of different boundary conditions and cone angles. In all cases the conical shell loses its stability through coupled-mode flutter. This proposed hybrid finite element method can be used efficiently for design and analysis of conical shells employed in high speed aircraft structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号