首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Based on first-principles calculations, we demonstrate the impact of the electric polarization on electron transport in ferroelectric tunnel junctions (FTJs). Using a Pt/BaTiO3/Pt FTJ as a model system, we show that the polarization of the BaTiO3 barrier leads to a substantial drop in the tunneling conductance due to changes in the electronic structure driven by ferroelectric displacements. We find a sizable change in the transmission probability across the Pt/BaTiO3 interface with polarization reversal, a signature of the electroresistance effect. These results reveal exciting prospects that FTJs offer as resistive switches in nanoscale electronic devices.  相似文献   

2.
A giant tunneling electroresistance effect may be achieved in a ferroelectric tunnel junction by exploiting the magnetoelectric effect at the interface between the ferroelectric barrier and a magnetic La(1-x)Sr(x)MnO3 electrode. Using first-principles density-functional theory we demonstrate that a few magnetic monolayers of La(1-x)Sr(x)MnO3 near the interface act, in response to ferroelectric polarization reversal, as an atomic-scale spin valve by filtering spin-dependent current. This produces more than an order of magnitude change in conductance, and thus constitutes a giant resistive switching effect.  相似文献   

3.
The spontaneous emission (SE) behavior of the polarized atoms in a dielectric thin slab embedded in dielectric or metallic medium is analyzed. It is found that the SE rate of the polarized atoms in the vicinity of interface between the slab and surrounding medium can be considerably varied when changing the polarized direction of atoms. A switching operation of atomic SE between the inhibition and enhancement processes of the SE can be realized. In a dielectric thin slab embedded in metallic medium, the SE rate of the atoms near the dielectric–metal interface is enhanced greatly owing to the effect of surface-plasmon polaritons. Our findings imply that the tuning of the polarized orientation of atoms in the dielectric thin slab can effectively control the atomic SE processes.  相似文献   

4.
Density-functional calculations are employed to investigate the effect of ferroelectric polarization of BaTiO(3) on the magnetocrystalline anisotropy of the Fe /BaTiO(3)(001) interface. It is found that the interface magnetocrystalline anisotropy energy changes from 1.33 to 1.02 erg cm (-2) when the ferroelectric polarization is reversed. This strong magnetoelectric coupling is explained in terms of the changing population of the Fe 3d orbitals at the Fe/BaTiO(3) interface driven by polarization reversal. Our results indicate that the electronically assisted magnetoelectric effects at the ferromagnetic/ferroelectric interfaces may be a viable alternative to the strain mediated coupling in related heterostructures and the electric field-induced effects on the interface magnetic anisotropy in ferromagnet/dielectric structures.  相似文献   

5.
陈峰  吴文彬  李舜怡  Andreas Klein 《中国物理 B》2014,23(1):17702-017702
The most important interface-related quantities determined by band alignment are the barrier heights for charge transport, given by the Fermi level position at the interface. Taking Pb(Zr,Ti)O3(PZT) as a typical ferroelectric material and applying X-ray photoelectron spectroscopy(XPS), we briefly review the interface formation and barrier heights at the interfaces between PZT and electrodes made of various metals or conductive oxides. Polarization dependence of the Schottky barrier height at a ferroelectric/electrode interface is also directly observed using XPS.  相似文献   

6.
The numerical analysis of a nonlinear equation set has revealed a possible increase in the ferroelectric phase transition point at the presence of the intermediate layer at the ferroelectric–dielectric interface. The order parameter distribution in the ferroelectric particles, as well as the effect of the intermediate layer thickness on the Curie temperature, has been studied.  相似文献   

7.
利用光子的闭合轨道理论,我们研究了原子在两个平行镜面间两层电介质板(折射率分别为n1,n2)中的自发辐射率. 自发辐射率呈现出多周期的振荡结构。自发辐射率的傅立叶变换中的每一个峰和光子从原子出发到返回原子的一条闭合轨道相对应。结果表明自发辐射率和两层电介质的宽度和折射率有关。和只有一层电介质的辐射率比较,当两层电介质的折射率n1 和 n2 差别很小时, 两层电介质之间分界面的反射效应可以忽略;但是当二者的差别很大时,发射效应变得非常重要且自发辐射率中的振荡减弱。本文的结果为原子在不同电介质间的自发辐射率的研究提供了新的理解。  相似文献   

8.
刘恩华  陈钊  温晓莉  陈长乐 《物理学报》2016,65(11):117701-117701
界面效应在提升异质结构材料的多铁性能方面有着重要的作用. 本文采用脉冲激光沉积技术在SrTiO3(STO)基片上制备了Bi0.8Ba0.2FeO3(BBFO)/La2/3Sr1/3MnO3(LSMO)异质结. X-射线衍射图谱表明异质结呈现单相外延生长, 利用高分辨透射电镜进一步证实了BBFO为四方相结构. X-射线光电子能谱证实异质结中只存在Fe3+ 离子, 没有产生价态的变化, 揭示了异质结铁电和铁磁性的增强与BBFO/LSMO的界面有关. 同时, 测试了磁电阻(MR)和磁介电(MD), 当磁场强度为0.8 T, 温度为70 K时, MR约为-42.2%, MD约为21.2%. 并且发现在180 K时出现磁相的转变. 实验结果揭示出异质界面效应在提升材料的多铁性和磁电耦合效应方面具有超常的优点, 是加快多铁材料实际应用的有效途径.  相似文献   

9.
A modified Weiss mean-field theory is used to study the dependence of the properties of a thin ferroelectric film on its thickness. The possibility of introducing gradient terms into the thermodynamic potential is analyzed using the calculus of variations. An integral equation is introduced to generalize the well-known Langevin equation to the case of the boundaries of a ferroelectric. An analysis of this equation leads to the existence of a transition layer at the interface between ferroelectrics or a ferroelectric and a dielectric. The permittivity of this layer is shown to depend on the electric field direction even if the ferroelectrics in contact are homogeneous. The results obtained in terms of the Weiss model are compared with the results of the models based on the correlation effect and the presence of a dielectric layer at the boundary of a ferroelectric and with experimental data.  相似文献   

10.
王秋萍  冯玉军  徐卓  成鹏飞  凤飞龙 《物理学报》2015,64(24):247701-247701
研究了铌镁酸铅-钛酸铅铁电材料的铁电、介电性能对阴极发射阈值电压的影响, 以及铁电阴极发射电流与激励脉冲电压和抽取电压之间的关系, 并分析了其发射机理. 结果表明, 室温介电常数高、极化强度变化量大的弛豫铁电体0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3具有较小的发射阈值电压; 铁电阴极电子发射与快极化反转和等离子体的形成有关; 由极化反转所致电子发射的自发射电流随激励脉冲电压的增大呈幂律增长关系, 其发射电流开始于激励脉冲电压的下降沿; 在抽取电压较大时, 发射电流随抽取电压的增大呈线性增长关系, 说明大电流主要取决于抽取电压; 其发射电流开始于激励脉冲电压的上升沿, 与“三介点”处的场增强效应和等离子体的形成有关; 当抽取电压为2500 V 时, 得到的发射电流幅值为210 A, 相应的电流密度为447 A/cm2.  相似文献   

11.
Using the transverse Ising model within the framework of the mean-field theory, we investigate a ferroelectric bilayer film with the surface transition layer within each constituent slab and an antiferroelectric interfacial coupling between two slabs. The combined influence of the surface transition layer and antiferroelectric interfacial coupling on the dielectric susceptibility of a bilayer film is discussed in detail. The results show that the surface transition layer plays a crucial role in dielectric susceptibility of a bilayer film.  相似文献   

12.
The dielectric layer in the sandwich structural device plays a very important role in determining the electrical properties of the ferroelectric film. In this paper, we investigate the effect of the dielectric layers with different thicknesses on switching performance of ferroelectric P(VDF-TrFE) thin films. The hysteresis loops become slanting with increasing thickness of the dielectric layer. A negative slope of the ‘real’ hysteresis loop is apparently observed which demonstrates negative capacitance effect caused by the dielectric layer. This behavior is simulated qualitatively by the Weiss mean field model considering an interfacial dielectric layer in series with a ferroelectric layer. The agreement between experiments and simulations supports that negative capacitance results from the positive feedback among electric dipoles. Furthermore, the switching time of the ferroelectric film increases with the increase of dielectric layer thickness. This study shows that the ferroelectric sandwich structure provides great potential towards low power negative capacitance devices.  相似文献   

13.
Wei Jiang  Veng-cheong Lo 《Physica A》2008,387(27):6778-6784
The Transverse Ising Model (TIM) based on the effective-field theory has been developed to study the physical properties of the ferroelectric bilayer system BaTiO3/SrTiO3 (BTO/STO), based on the differential operator technique. The effect of strain on the interfacial layers between two different slabs (A and B) can be described by the effective built-in field E2. The ferroelectric behavior of a bilayer system is strongly influenced by strain and associated with slab thickness. The phase transition temperature shifts toward a higher value on increasing the slab thickness. The susceptibility strongly depends on both the strength of strain and the slab thickness. The height of the peak from the plot of susceptibility against temperature decreases on increasing the slab thickness. The pyroelectric coefficient changes into a round peak at the transition temperature that is different from the sharp peak in the absence of external and strain-induced fields.  相似文献   

14.
Artificial tuning of dielectric parameters can result from interface conductivity in polycrystalline materials. In ferroelectric single crystals, it has already been shown that ferroelectric domain walls can be the source of such artificial coupling. We show here that low-temperature dielectric losses can be tuned by a dc magnetic field. Since such losses were previously ascribed to polaron relaxation we suggest this results from the interaction of hopping polarons with the magnetic field. The fact that this loss alteration has no counterpart in the real part of the dielectric permittivity confirms that no interface is involved in this purely dynamical effect. The contribution of mobile charges hopping among Fe-related centers was confirmed by ESR spectroscopy, showing a maximum intensity at ca T?~?40?K.  相似文献   

15.
A reentrant novel phase is observed in the hexagonal ferroelectric HoMnO3 in the presence of magnetic fields in the temperature range defined by a plateau of the dielectric constant anomaly. The plateau evolves with fields from a narrow dielectric peak at the Mn-spin rotation transition at 32.8 K in zero field. The anomaly appears both as a function of temperature and as a function of magnetic field without detectable hysteresis. This is attributed to the indirect coupling between the ferroelectric (FE) and antiferromagnetic (AFM) orders, arising from an FE-AFM domain wall effect.  相似文献   

16.
Structural, dielectric and ferroelectric properties of thin films of La-doped lead zirconate titanate (PLZT) and sodium bismuth titanate-barium titanate (NBT-BT) perovskite relaxor ferroelectric have been investigated. PLZT films were deposited on Pt/Si substrates in oxygen atmosphere by pulsed laser deposition (PLD) and radio frequency (RF) discharge-assisted PLD, using sintered targets with different La content and Zr/Ti ratio, near or at the boundary relaxor ferroelectric. The films are polycrystalline with perovskite cubic or slightly rhombohedral structure. A slim ferroelectric hysteresis loop, typical for relaxors, has been measured for all film sets. Dielectric characterization shows a large value of capacitance tunability and low dielectric loss. However, common problems related to lead diffusion into the metallic electrode layer do not allow one to obtain high capacitance values, due to the formation of an interface layer with low dielectric constant. Lead-free NBT-BT thin films have been deposited on single crystal (1 0 0)-MgO substrates starting from targets with composition at the morphotropic phase boundary between rhombohedral and tetragonal phase. Films deposited by PLD are polycrystalline perovskite with a slight (1 0 0) orientation. Capacitance measurements were performed using interdigital metallic electrodes deposited on the film's top surface and showed high relative dielectric constant, on the order of 1300.  相似文献   

17.
刘宝盈  李春芳 《中国物理 B》2008,17(10):3720-3724
This paper reports that the central position of the reflected and transmitted beams of a nonlinear polarized light beam at the interface between two media undergoes transverse shifts. It presents a solution to the problem of transverse shift of a non-uniformly polarized paraxial light beam transmitting through interfaces between two homogeneous media by using a two-form amplitude and an extension matrix to represent the vector angular spectrum of a three-dimensional (3D) light beam. It derives general formula for the transverse shift of the transmitted beam, and discusses the shift of a well-collimated beam transmitting through an interface between two homogeneous media and a thin dielectric slab.  相似文献   

18.
A study aimed at finding a way of scaling-up a small laboratory reactor employing an electric discharge with a dielectric barrier was carried out. The dielectric used was ferroelectric ceramic material of a high permittivity (? above 1000) comparing to glass (? ≈? 3–10), which is generally used. The main component of the ceramics was BaTiO3. The advantage of using this type of ceramics is related to a considerable increase in power density without the need of increasing voltage which supplies the system. The influence of the thickness and surface of ferroelectric electrodes on the macroscopic characteristics of the discharge and efficiency of chemical process was investigated. Ozone synthesis from oxygen was the reaction under consideration. A new structure of the reactor was proposed comprising a series of parallelly spaced thin ceramic plates. High electric permittivity of the ferroelectric ceramics enables such ?sandwich”? structure to be supplied by only two edge ceramic electrodes.  相似文献   

19.
Oxides have become a key ingredient for new concepts of electronic devices. To a large extent, this is due to the profusion of new physics and novel functionalities arising from ultrathin oxide films and at oxide interfaces. We present here a perspective on selected topics within this vast field and focus on two main issues. The first part of this review is dedicated to the use of ultrathin films of insulating oxides as barriers for tunnel junctions. In addition to dielectric non-magnetic epitaxial barriers, which can produce tunneling magnetoresistances in excess of a few hundred percent, we pay special attention to the possibility of exploiting the multifunctional character of some oxides in order to realize ‘active’ tunnel barriers. In these, the conductance across the barrier is not only controlled by the bias voltage and/or the electrodes magnetic state, but also depends on the barrier ferroic state. Some examples include spin-filtering effects using ferro- and ferrimagnetic oxides, and the possibility of realizing hysteretic, multi-state junctions using ferroelectric barriers. The second part of this review is devoted to novel states appearing at oxide interfaces. Often completely different from those of the corresponding bulk materials, they bring about novel functionalities to be exploited in spintronics and electronics architectures. We review the main mechanisms responsible for these new properties (such as magnetic coupling, charge transfer and proximity effects) and summarize some of the most paradigmatic phenomena. These include the formation of high-mobility two-dimensional electron gases at the interface between insulators, the emergence of superconductivity (or ferromagnetism) at the interface between non-superconducting (or non-ferromagnetic) materials, the observation of magnetoelectric effects at magnetic/ferroelectric interfaces or the effects of the interplay and competing interactions at all-oxide ferromagnetic/superconducting interfaces. Finally, we link up the two reviewed research fields and emphasize that the tunneling geometry is particularly suited to probe novel interface effects at oxide barrier/electrode interfaces. We close by giving some directions toward tunneling devices exploiting novel oxide interfacial phenomena.  相似文献   

20.
Elastic and anelastic behaviour of single crystal and ceramic samples of Pb(Mg(1/3)Nb(2/3))O(3) has been investigated at frequencies of ~0.1-1.2 MHz through the temperature interval 10-800 K by resonant ultrasound spectroscopy (RUS). Comparison with data from the literature shows that softening of the shear modulus between the Burns temperature and the freezing interval is independent of frequency. The softening is attributed to coupling between acoustic modes and the relaxation mode(s) responsible for central peaks in Raman and neutron scattering spectra below the Burns temperature, and can be described with Vogel-Fulcher parameters. Shear elastic compliance and dielectric permittivity show similar patterns of temperature dependence through the freezing interval, demonstrating strong coupling between ferroelectric polarization and strain such that the response to applied stress is more or less the same as the response to an applied electric field, with a frequency dependence consistent with Vogel-Fulcher-like freezing in both cases. Differences in detail show, however, that shearing induces flipping between different twin orientations, in comparison with the influence of an electric field, which induces 180° flipping: the activation energy barrier for the former appears to be higher than for the latter. Below the freezing interval, the anelastic loss also has a similar pattern of evolution to the dielectric loss, signifying again that essentially the same mechanism is involved in the freezing process. Overall softening at low temperatures is attributed to the contributions of strain relaxations due to coupling with the local ferroelectric order parameter and of coupling between acoustic modes and continuing relaxational modes of the polar nanostructure. Dissipation is attributed to movement of boundaries between PNRs or between correlated clusters of PNRs. Overall, strain coupling is fundamental to the development of the characteristic strain, dielectric and elastic properties of relaxors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号