首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New target geometries for collisional excitation X-ray laser experiments (in nickel) were proposed, analyzed, and experimentally studied on the glass development laser. The new geometries are designed to yield a higher gain and reduced refraction due to (1) a higher plasma density, (2) a wide lateral density profile, and (3) a concave lateral density profile. These new geometries were (a) two parallel exploding (thin) foils, irradiated from one side only, (b) two ablating (thick) foils, one of which was irradiated on its inner face, and (c) and exploding foil in front of an ablating foil, irradiated by a single laser beam incident on the thin foil. Long-line-focus experiments are described. Theoretical developments included development of a ray-tracing code for an amplifying medium of varying lateral density profile and prediction of high gain on new type transitions in neon-like ions, involving the excitation of an inner (2 s) electron  相似文献   

2.
We carried out theoretical investigation about velocity-selective atomic excitation on long-lived (metastable) levels of an atomic vapour in a thin cell by a monochromatic laser beam, running in the normal direction. The regime of coherent Rabi oscillations is considered on the light-induced transition from a sublevel of the ground quantum term to a metastable atomic level. On the basis of density matrix equations for the two-level system, we analysed the atomic population density of the metastable level, when the sample is irradiated by resonant monochromatic laser beam with an annular cross-section versus atomic velocities and versus the detuning, the amplitude, and the geometry of the laser beam. It is shown that, in the centre of the annular region, it can be obtained a population distribution on the metastable level as a function of the laser detuning, characterized by a sharp narrow resonance profile, whose width is reduced with respect to the thermal Doppler width roughly by the ratio between the diameter of the irradiated region and the inner thickness of the cell. We suggest high-sensitive schemes, in order to detect these sub-Doppler resonances, by probing the population of the metastable state with a second laser beam, resonant with a transition leaving from the metastable level. The case of 1S0 → 3P1 spin-forbidden transition of Ca is discussed in more detail  相似文献   

3.
A 250 µm thick high purity beryllium foil is symmetrically irradiated by a total of 20 laser beams at 351 nm wavelength. Each laser carries 480 J in a 1 ns long pulse, the pulses are staggered in time and focussed on a 800 µm diameter focal spot, yielding a flat top intensity profile of 2.4 × 1014 W/cm2 for 3 ns on the target surface. The evolution of the mass density is modelled with the radiation‐hydrodynamics code HELIOS as function of the target depth. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
《Current Applied Physics》2015,15(3):242-247
A theoretical examination on coherent transition radiations (CTR) from the surface of thin solid density target irradiated by high intensity laser is presented. The theory is extended to consider the expansion dynamics of thin foils. The motion of target surfaces leads to the modulation on the temporal structure of micro bunches in the electron beam as well as the spectrum of CTR. The spectral shifts of radiation are owing to the enhancement of electron bunch separation and the relativistic Doppler effects. The radiation power distribution is strongly affected by the temporal coherence of electron beam structure, so thus the electron temperature and velocity dispersions. With these effects accounted for, the spectral properties of coherent transition radiation can provide insights into the expansion of thin foil targets irradiated by intense laser pulse as well as the fast electron transport through it.  相似文献   

5.
An experimental investigation of lateral electron transport in thin metallic foil targets irradiated by ultraintense (>or=10(19) W/cm2) laser pulses is reported. Two-dimensional spatially resolved ion emission measurements are used to quantify electric-field generation resulting from electron transport. The measurement of large electric fields ( approximately 0.1 TV/m) millimeters from the laser focus reveals that lateral energy transport continues long after the laser pulse has decayed. Numerical simulations confirm a very strong enhancement of electron density and electric field at the edges of the target.  相似文献   

6.
Neon-like niobium X-ray lasers have been studied using both slab and thin-foil target geometries. Niobium foils of various lengths were irradiated from both sides with two beams of the frequency-doubled Nova laser system using a line focus. We looked for gain by measuring spectrally integrated line intensities at different plasma lengths. Gain was observed in four neon-like niobium lines corresponding to 3s–3p transitions. The line profile of theJ = 0–1 line ( = 145.9 ) shows splitting due to the hyperfine effect. Improved contrast in the hyperfine structure is observed as the plasma length is increased. Hyperfine splitting may be relevant to other 3s–3p transitions in neon-like niobium as well as other neon-like X-ray laser systems.  相似文献   

7.
1.053μm激光辐照金箔靶发射X射线能谱的实验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
在“星光-Ⅱ”单束高功率激光装置上利用束匀滑的钕玻璃基频激光辐照不同厚度的金箔靶,测量了金箔靶前向和背向的X射线能谱、X射线辐射能量角分布及X射线能谱时间变化过程,研究了金箔靶中激光烧蚀及辐射烧蚀过程;获得了不同厚度金箔、不同激光功率密度及不同角度等几种条件下其前后向X射线能谱的定量测量结果,同时从不同厚度的金箔背侧X射线能谱时间过程观察到明显的辐射热波时间延迟. 关键词: 金箔靶 X射线能谱 辐射烧蚀 辐射热波  相似文献   

8.
A new kind of surface structure was observed on polyethylene-terephthalate (PET) foils after 248 nm KrF-excimer-laser irradiation in vacuum. The laser fluences employed were around the ablation threshold. The branched fractal structures observed have a lateral dimension in the micrometer range and a heigth of 30 to 60 nm.  相似文献   

9.
Electrically exploding foil (EEF) technique offers a unique small-scale device to accelerate thin plastic foils (liner) to high (>10 km) velocities. Besides direct application as a macroparticle accelerator for various applications, such systems can also serve as plasma injectors or pre-accelerators to electromagnetic launchers. Though empirical models for scaling of liner velocity in such devices suggest the important role of burst current density in exploding foil, but behavior of slow and fast (dI/dt/spl ges/10/sup 12/ A/s) systems appear to differ significantly. In this paper, based on some established models and realistic current profiles, it is inferred that higher energy of a capacitor bank may not translate to higher velocity in "optimized" EEF systems, if its rise time is poor. A possible way to overcome this problem could be to use an additional stage of metallic foil as an opening switch. The consequent fast rising current may be expected to enhance the liner velocity by a factor of 2-5 in typical capacitor banks. Analysis and relevant experiments are described to investigate the issues.  相似文献   

10.
Measurements of ion acceleration in polymethylmethacrylate foils covered by a thin copper film irradiated by fs laser in target normal sheath acceleration regime are presented. The ion acceleration depends on the laser parameters, such as the pulse energy; depends on the irradiation conditions, such as the focal point position of the laser with respect to the target surface; and depends on the target properties, such as the metallic film thickness. The proton acceleration increases in the presence of the metallic film enhancing the plasma electron density, reaching about 1.6 MeV energy for a focal position on the target surface. The plasma diagnostics uses SiC detectors, absorber foils, Faraday cups, and gafchromic films. Employing p‐polarized laser light and a suitable oblique incidence, it is possible to increase the proton acceleration up to about 2.0 MeV thanks to the effects of laser absorption resonance due to plasma waves excitation.  相似文献   

11.
The influence of the laser radiation power density on the changes in the composition and mechanical properties of surface layers of Cu50Ni50 foils has been investigated using X-ray photoelectron spectroscopy, scanning probe microscopy, X-ray diffraction, and microhardness measurements. It has been found that, after laser irradiation, the redistribution of elements occurs in the surface layer with a thickness of ~30 nm on the irradiated side of the foil. It has been revealed that there are microdistortions in the crystal lattice of the alloy, microdeformations of grains, and variations in the microhardness of the irradiated surface. The mechanisms explaining the observed changes in the foils after laser irradiation have been proposed.  相似文献   

12.
 利用一维多群辐射输运程序RDMG数值模拟神光II条件下辐射烧蚀铝箔的实验研究,详细描述了X光在铝箔中的辐射输运过程,清楚地显示了辐射热波在铝箔中的传播,给出铝等离子体温度密度的时空分布、铝箔背面出射的X光能谱及出射X光各能区能流随时间的变化,分析出射X光的能区对测量结果的影响,对神光II条件下辐射烧蚀铝箔的厚度范围进行初步的探讨。数值结果与实验结果相吻合。  相似文献   

13.
在金属层表面引入微结构以实现对Z箍缩等离子体形成和发展过程中不稳定性的调控具有重要研究价值.在“强光一号”装置上(峰值电流~1.4 MA,上升时间~100 ns),开展了针对具有一维周期性凹槽调制结构的金属薄膜的电爆炸实验研究.实验负载采用外推型平面结构,基底为30μm厚铝膜,刻蚀周期为2 mm,刻蚀深度约为10μm.通过激光阴影成像、激光干涉成像和可见光自辐射成像等系统进行联合诊断.实验结果表明刻蚀结构对等离子体发展过程的不稳定性特征产生了明显调制作用,原本征波长也受到抑制,微结构周期对不稳定结构波长产生趋同效应;未刻蚀一侧边界层同样受刻蚀层结构的影响,在不稳定结构上表现出相似形貌,且内外侧不稳定性特征的耦合关联性增强;刻蚀凹槽处在爆炸过程中膨胀更为迅速,形成的表面等离子体结构与初始结构反相;在刻蚀结构的几何突变处会形成细长的等离子体喷流,在二分之一刻蚀波长处出现波谱特征峰.理论分析表明电流密度调制造成电热不稳定性分布改变是调控作用产生的重要原因.  相似文献   

14.
采用耦合双温度模型的分子动力学方法对飞秒激光照射金箔的固液相变过程进行了模拟研究,利用序参数法对固液原子进行判定从而确定了金箔发生相变时的固液界面位置和温度,对基于傅立叶定律的抛物线模型和考虑非傅立叶效应的双曲线模型模拟得到的结果进行对比分析,在此基础上采用耦合双曲线模型的分子动力学方法研究了激光能量密度和脉冲宽度对金箔相变过程的影响.结果表明,当激光作用于金箔时,金箔上表面首先熔化,固液界面随时间不断向金箔底部移动,并且在相同条件下,双曲线模型下的金箔熔化深度和固液界面温度均大于抛物线模型的结果.当考虑非傅里叶效应时,激光能量密度越大,固液界面温度越高,金箔熔化时间越短;激光脉冲宽度越小,固液界面温度越大,金箔熔化速度越快.  相似文献   

15.
Acceleration of ions from ultrathin foils irradiated by intense circularly polarized laser pulses is investigated using a one-dimensional particle-in-cell code. As a circularly polarized laser wave heats the electrons much less efficiently than the wave of linear polarization, the ion can be synchronously accelerated and bunched by the electrostatic field, thus a monoenergetic and high intensity proton beam can be generated.  相似文献   

16.
For increasing the packing density of electronic devices and enabling 3D wiring, new concepts of interconnection for flexible circuit boards are required. The backside wiring is one innovative concept which, however, requires interconnections from the back to the front side by means of vias.Results on backside opening of polymer foils for exposing a thin metal film deposited at the front side are presented. For the experiments, a thin polyimide foil covered with a thin molybdenum metal film was used. By using mask projection of a pulsed UV-laser beam (248 nm, 20 ns) polymer foil was ablated. The laser ablation process must be adjusted in the manner to avoid damage of the thin metal film, to prevent cones formation at laser ablation, but still enabling the clean ablation of the polymer. The influence of process parameters on the backside opening is discussed and compared with theoretical estimations of the laser-induced temperatures. Using a two-step ablation process applying first high fluences to ablate the main part of the foil and finishing with low laser fluence turns out to be advantageous. This backside opening (BSO) can be used to perform an electrical contact from the backside.  相似文献   

17.
We report the observation of coherent uv emission at 330.2±0.5 nm when sodium vapor in a heatpipe is irradiated with a pulsed visible dye laser with output wavelength in the 570–595 nm region. It is found that intense uv emission can be produced from Na atoms as well as from Na2 molecules. The excitation functions and their dependence on vapor density and laser power density are presented and the mechanisms for producing the emission are discussed.On leave from the Department of Physics, Fujian Normal University, Fuzhou, Fujian, People's Republic of China  相似文献   

18.
We report on new possibilities to generate solid-density plasma at extreme energy density by intense VUV beams. Here we consider 100 fs pulses of 30 eV photons focused to 1016 and 1018 W/cm2. The temperature evolution in 50 nm thick aluminum foils is discussed on the basis of simulations, performed with the one-dimensional radiation hydrodynamics code MULTI-fs. For 30 eV photons, the foil is shown to switch from transmission to reflection mode on a femto-second time-scale; this is due to the rapid change of the plasma frequency during laser heating which may turn an initially transparent Al-foil into an opaque one. The switching-time depends on the intensity of the laser pulse. Also layered heating structures inside the foil are discussed which occur due to reflection at the rear surface.  相似文献   

19.
In a large-aperture amplifier, steady-state gain is heavily reduced by the intra-cavity amplified spontaneous emission (ASE). However, the reduced gain could be transiently enhanced by temporally suppressing the ASE with an intense depleting short pulse. Previously, we reported the experimental observation of this transient gain enhancement in a KrF laser amplifier with a 29-cm-diameter aperture. In this paper, this transient gain enhancement is examined theoretically by using a time-dependent ASE code. From a comparison of the code calculations with the experimental results, the observed quick gain recovery and also the possibility of a transient gain higher than the steady-state value are discussed. Received: 18 February 1999 / Revised version: 5 March 1999 / Published online: 28 April 1999  相似文献   

20.
Coupling of a soft X-ray laser beam with a relaying concave mirror in a sequentially pumped amplifier geometry using the Ne-like Ge system has been studied experimentally. Preliminary observations indicate an increase in the spatial coherence of the amplified relayed beam. In addition, near-field imaging of one of the amplifier plasmas shows a double-lobed intensity pattern of the emergent beam indicating refractive guiding of the amplified beam with components both normal and tangential to the target surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号