首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 78 毫秒
1.
S. Pankavich  Z. Shreif  P. Ortoleva   《Physica A》2008,387(16-17):4053-4069
Using multiscale analysis and methods of statistical physics, we show that a solution to the N-atom Liouville equation can be decomposed via an expansion in terms of a smallness parameter , wherein the long scale time behavior depends upon a reduced probability density that is a function of slow-evolving order parameters. This reduced probability density is shown to satisfy the Smoluchowski equation up to O(2) for a given range of initial conditions. Furthermore, under the additional assumption that the nanoparticle momentum evolves on a slow time scale, we show that this reduced probability density satisfies a Fokker–Planck equation up to O(2). This approach has applications to a broad range of problems in the nanosciences.  相似文献   

2.
Sharon Khan  Andy M. Reynolds 《Physica A》2005,350(2-4):183-188
A Fokker–Planck equation describing the statistical properties of Brownian particles acted upon by long-range stochastic forces with power-law correlations is derived. In contrast with previous approaches (Wang, Phys. Rev. A 45 (1992) 2), it is shown that the distribution of Brownian particles after release from a point source is broader than Gaussian and described by a Fox function. Transport is shown to be ballistic at short times and either sub-diffusive or super-diffusive at large times. The imposition of occasional trapping events onto the Brownian dynamics can result in confined diffusion (d/dtx2→0) at long times when the mean trapping time is divergent. It is suggested that such dynamics describe protein motions in cell membranes.  相似文献   

3.
The issue of irreversibility is revisited for a closed system formed by N classical non‐relativistic particles inside a volume Ω, interacting through two‐body potentials, for large N and Ω. The classical phase‐space distribution function f, multiplied by suitable Hermite polynomials and integrated over all momenta, yields new moments. The Liouville equation and the initial distribution fin imply a new non‐equilibrium linear infinite hierarchy for the moments. That hierarchy differs from the BBGKY one for distribution functions and displays some suggestive Fokker‐Planck‐like structures. A physically motivated ansatz for fin (which introduces statistical assumptions), used by previous authors, is chosen. All moments of order nn0 are expressed in terms of those of order n0 — 1 and of fin. The properties of the Fokker‐Planck‐like structures (hermiticity, non‐negative eigenvalues) allow for implementing a natural long‐time approximation in the hierarchy, so as to introduce relaxation to equilibrium and irreversibility, consistently with the hydrodynamical balance equations. Further (more restrictive) assumptions and approximations lead to new irreversible models, generalizing non‐trivially the Fokker‐Planck equation. They are described through a truncated hierarchy of linear equations for moments of order nn0 — 1 (n0 being finite). The connections with Brownian particle dynamics and Fluid Dynamics are analyzed, for consistency.  相似文献   

4.
We prove convergence to equilibrium with explicit rates for various kinetic equations with relatively bad control of the distribution tails: in particular, Boltzmann-type equations with (smoothed) soft potentials. We compensate the lack of uniform-in-time estimates by the use of precise logarithmic Sobolev-type inequalities, and the assumption that the initial datum decays rapidly at large velocities. Our method not only gives explicit results on the times of convergence, but is also able to cover situations in which compactness arguments apparently do not apply (even mere convergence to equilibrium was an open problem for soft potentials).  相似文献   

5.
Spatially fractional order diffusion equations are generalizations of classical diffusion equations which are used in modeling practical superdiffusive problems in fluid flow, finance and others. In this paper, we present an accurate and efficient numerical method to solve a fractional superdiffusive differential equation. This numerical method combines the alternating directions implicit (ADI) approach with a Crank–Nicolson discretization and a Richardson extrapolation to obtain an unconditionally stable second-order accurate finite difference method. The stability and the consistency of the method are established. Numerical solutions for an example super-diffusion equation with a known analytic solution are obtained and the behavior of the errors are analyzed to demonstrate the order of convergence of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号