首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A further development of a previously proposed approach to calculating the sound field in an arbitrarily irregular ocean is presented. The approach is based on solving the first-order causal mode equations, which are equivalent to the boundary-value problem for acoustic wave equations in terms of the cross-section method. For the mode functions depending on the horizontal coordinate, additional terms are introduced in the cross-section equations to allow for the multilayer structure of the medium. A numerical solution to the causal equations is sought using the fundamental matrix equation. For the modes of the discrete spectrum and two fixed low frequencies, calculations are performed for an irregular two-layer waveguide model with fluid sediments, which is close to the actual conditions of low-frequency sound propagation in the coastal zone of the oceanic shelf. The calculated propagation loss curves are used as an example for comparison with results that can be obtained for the given waveguide model with the use of adiabatic and one-way propagation approximations.  相似文献   

2.
刘娟  李琪 《物理学报》2021,(6):115-127
针对介质参数及海底边界水平变化波导中的声传播问题,本文基于多模态导纳法提出一种能量守恒且便于数值稳定求解的耦合模态方法.将声压表示为一组正交完备的本地本征函数之和,对声压满足的Helmholtz方程在本地本征函数上作投影,推导出关于声压模态系数的二阶耦合模态方程组.耦合矩阵直观描述水平变化因素对模态耦合的贡献.为避免直接求解二阶耦合模态方程组可能遇到的数值发散问题,将其重构为两个耦合的一阶演化方程组,引入导纳矩阵并使用Magnus数值积分方法获得稳定的声场解.利用该耦合模态方法数值计算水平变化波导中的声场,并与COMSOL参考解比较,结果表明该耦合模态理论能够精确求解水平变化波导中的点源及分布源传播问题.  相似文献   

3.
An approach is developed for calculating the sound fields in a non-stratified sea medium with irregularities that are not weak. The method of cross sections for horizontal parts of acoustic modes is used to obtain first-order causal equations that are equivalent to the boundary-value problem. A matrix equation describing the backscattered field of modes is analyzed, and the conditions that determine the weakness of the irregularities of the medium and the validity of the known approximate methods of sound field calculations are considered. The approximation of unidirectional propagation is represented in the form of quadratures. The example of a 2D shallow-water waveguide with a strongly irregular profile of a perfectly rigid bottom is considered to illustrate the advantages of the proposed approach in comparison with the approximate methods for specific low frequencies. The qualitative and quantitative differences that arise because of taking into account the backscattering between the curves of propagation losses corresponding to the exact solution and the conventional approximate methods are discussed.  相似文献   

4.
5.
杨春梅*  骆文于  张仁和  秦继兴 《物理学报》2013,62(9):94302-094302
通过利用标准简正波程序KRAKEN计算本地简正波解及耦合矩阵, 进一步发展了求解水平变化波导中声场的全局矩阵耦合简正波方法(Luo et al., "A numerically stable coupled-mode formulation for acoustic propagation in range-dependent waveguides," Sci. China-Phys. Mech. Astron. 55, 572 (2012)), 使得该方法可以处理具有可穿透海底及随深度变化声速剖面等实际问题, 并提供声场的完全双向解. 本文还给出了双层波导中耦合矩阵的解析表达式, 并利用其验证了本方法中耦合矩阵数值算法的精度. 最后, 利用改善后的全局矩阵耦合简正波模型(DGMCM)计算了美国声学学会(ASA)提出的可穿透楔形波导标准问题, 将所得数值解与参考解比较, 结果表明DGMCM方法可以精确处理水平变化波导中声传播实际问题. 关键词: 耦合简正波理论 全局矩阵方法 可穿透楔形波导  相似文献   

6.
提出一种可稳定计算Pekeris波导中声场的波数积分方法,并在此基础上开发出一个数值模型,可用于提供Pekeris波导中声场的精确、稳定的数值解。在这个方法中,由于与深度有关的波动方程齐次解中所有的上行波与下行波均采用了合理的归一化表示,从而得到的系统方程是无条件稳定的。在简正波方法中,割线积分一般只对近场有显著影响。因此,传统的简正波模型一般都忽略割线积分对声场的贡献。但是,如果某号简正波离割线非常近,则割线积分对非常远距离的声场仍可能有显著影响。在这种情况下,传统的简正波模型由于忽略割线积分的贡献,从而得到的声场结果是不准确的。本文通过数值算例比较本文提出的波数积分模型与传统的简正波模型。数值结果表明,本文提出的模型可以提供精确、稳定的Pekeris波导中声场的数值解,而在某些情况下传统的简正波模型得到的声场结果是不准确的。因此,本文提出的模型可以作为Pekeris波导中声传播问题的标准模型使用。   相似文献   

7.
水平变化波导中的简正波耦合与能量转移   总被引:1,自引:0,他引:1       下载免费PDF全文
莫亚枭  朴胜春  张海刚  李丽 《物理学报》2014,63(21):214302-214302
针对海底地形水平变化对声场能量传播和声场干涉结构的影响,对简正波之间的耦合和能量转移进行了研究.建立了一种二维大步长格式的耦合简正波模型和三维楔形波导耦合简正波模型,以便快速有效地分析简正波之间的耦合和能量转移.基于耦合简正波模型,阐述了前向声场能量在水平变化波导中传播时的转移过程.并根据射线简正波理论,解释了海底地形变化对声场能量分布的影响机理.水平变化波导中声场的仿真计算表明,当本征值虚部发生剧烈变化时声场存在着较强的简正波耦合和能量转移,且海底地形变化将导致声场能量的水平传播方向偏转至海水深度增加的方向.在声场能量转移和传播方向变化中,声场的能量趋于保留在波导中而不向海底泄漏.同时,声场能量分布受到类似于压缩或稀疏的作用,从而形成椭圆状的干涉结构.  相似文献   

8.
A coupled-mode sound propagation model with complex effective depth is presented,in order to involve the effect of branch line integral for acoustic field in a range-dependent waveguide.The equations of motion and continuity are used to obtain the coupled equations,which satisfy boundary conditions in the waveguide with varying topography and contain one coupling matrix.Meanwhile,the couplings between discrete and continuous spectrum are dealt with based on complex effective depth theory.Numerical simulations show that the accuracy of transmission loss is improved by the coupled mode model when eigenvalues of trapped modes are located near the branch point.The acoustic field in a non-horizontally stratified waveguide can be calculated efficiently and accurately by this model,and the energy corresponding to trapped modes,leaky modes and branch line integral can be considered adequately.  相似文献   

9.
唐骏  朴胜春  张海刚 《中国物理 B》2017,26(11):114301-114301
A three-dimensional(3D) parabolic equation(PE) model for sound propagation in a seismo-acoustic waveguide is developed in Cartesian coordinates, with x, y, and z representing the marching direction, the longitudinal direction, and the depth direction, respectively. Two sets of 3D PEs for horizontally homogenous media are derived by rewriting the 3D elastic motion equations and simultaneously choosing proper dependent variables. The numerical scheme is for now restricted to the y-independent bathymetry. Accuracy of the numerical scheme is validated, and its azimuthal limitation is analyzed. In addition, effects of horizontal refraction in a wedge-shaped waveguide and another waveguide with a polyline bottom are illustrated. Great efforts should be made in future to provide this model with the ability to handle arbitrarily irregular fluid-elastic interfaces.  相似文献   

10.
为了考虑海底地形随距离变化的非水平分层介质中割线积分对声场的贡献,提出了复等效深度耦合简正波模型。该耦合简正波模型由介质运动方程和连续性方程推导得到了耦合微分方程组,此方程组满足海底地形随距离变化情况下的边界条件且仅包含一个耦合矩阵,并通过引入复等效深度理论处理连续谱和离散谱之间的相互耦合。仿真计算表明,复等效深度耦合简正波模型提高了波导简正波本征值位于割线枝点附近情况下声传播损失的计算精度,充分考虑了波导简正波、非波导简正波和割线积分对声场的贡献,可快速而准确地计算非水平分层介质中的声场。   相似文献   

11.
Although tyre/road noise has been a research subject for more than three decades, there is still no consensus in the literature as to which waves on a tyre are mainly responsible for the radiation of sound during rolling. Even the free vibrational behaviour of a stationary (non-rotating) tyre, not in contact with the ground, is still not well understood in the mid- and high-frequency ranges. Thus, gaining an improved understanding of this behaviour is a natural first step towards illuminating the question of which waves on a rolling tyre contribute to sound radiation. This is the topic of the present paper, in which a model based on the waveguide finite element method (WFEM) is used to study free wave propagation, on a stationary tyre, in the range 0-1500 Hz. In the low-frequency region (0-300 Hz), wave propagation is found to be rather straightforward, with two main wave-types present. Both have cross-section modes involving a nearly rigid motion of the belt. For higher frequencies (300-1500 Hz) the behaviour is more complex, including phenomena such as ‘curve veering’ and waves for which the phase speed and group speed have opposite signs. Wave-types identified in this region include (i) waves involving mainly sidewall deformation, (ii) belt bending waves, (iii) a wave with significant extensional deformation of the central belt region and (iv) a wave with a ‘breathing’ cross-section mode. The phase speed corresponding to found waves is computed and their radiation efficiency is discussed, assuming free-field conditions. In a future publication, the tyre model will be used in conjunction with a contact model and a radiation model to investigate the contribution of these waves to radiated sound during rolling.  相似文献   

12.
This paper considers an approximate ray-based analytical approach for evaluating the joint statistical moments of mode amplitudes in an acoustic waveguide with large-scale sound speed fluctuations. Explicit analytic expressions for the statistical moments are derived from an approximate analytical solution of the mode-coupling equations. The analytic solution allows one to deduce a scaling law establishing the connection between amplitudes of modes with the same ratio of the mode number to frequency. The applicability of the ray-based approach for evaluating the joint statistical moments of modes amplitudes including the moments at different frequencies is demonstrated using the Monte Carlo simulation of sound fields in a model of the underwater acoustic waveguide in a deep ocean. Numerical simulation also shows different manifestations of the scaling law. In particular, it is shown how this law manifests itself in the acoustic energy distribution between normal modes, in the jump-like range variations of statistical moments, and in the shape of the correlation function between amplitudes of different modes at different frequencies.  相似文献   

13.
A model is developed for the propagation of finite amplitude acoustical waves and weak shocks in a straight duct of arbitrary cross section. It generalizes the linear modal solution, assuming mode amplitudes slowly vary along the guide axis under the influence of nonlinearities. Using orthogonality properties, the model finally reduces to a set of ordinary differential equations for each mode at each of the harmonics of the input frequency. The theory is then applied to a two-dimensional waveguide. Dispersion relations indicate that there can be two types of nonlinear interactions either called "resonant" or "non-resonant." Resonant interactions occur dominantly for modes propagating at a rather large angle with respect to the axis and involve mostly modes propagating with the same phase velocity. In this case, guided propagation is similar to nonlinear plane wave propagation, with the progressive steepening up to shock formation of the two waves that constitute the mode and reflect onto the guide walls. Non-resonant interactions can be observed as the input modes propagate at a small angle, in which case, nonlinear interactions involve many adjacent modes having close phase velocities. Grazing propagation can also lead to more complex phenomena such as wavefront curvature and irregular reflection.  相似文献   

14.
A separable form of the equations of motion for a cylindrical anisotropic elastic waveguide of arbitrary cross-section is derived. From these the orthogonality relation for the modes of harmonic wave propagation in the waveguide is readily derived.  相似文献   

15.
This paper presents a new ray theory for the propagation of sound waves in nonuniformly moving media. It is found that the ray equations in weakly inhomogeneous and slowly moving media are analogous to the equations of motion of charged particles in nonuniform electric and magnetic fields. The adiabatic approximation is used to study the problem of the propagation of sound rays in a model of near-ocean-bottom waveguide with horizontal flow and slowly varying parameters along the direction of propagation of the wave. A general formula is derived that describes the transverse displacement of the trajectory of the ray relative to the direction of propagation of the wave.  相似文献   

16.
A model of the ionospheric MHD waveguide is considered that enables one, using fairly clear and simple equations, to describe the main physical features of the waveguide propagation of geomagnetic pulsations. The proposed model makes it possible to identify a number of ionospheric parameters, in terms of which the mode cutoff frequencies and the phase and group velocities of modes may be expressed.Leningrad State University. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 34, No. 2, pp. 123–130, February, 1991.  相似文献   

17.
A numerical method for sound propagation of higher-order cross-sectional modes in a duct of arbitrary cross-section and boundary conditions with nonzero, complex acoustic admittance has been considered. This method assumes that the cross-section of the duct is uniform and that the duct is of a considerable length so that the longitudinal modes can be neglected. The problem is reduced to a two-dimensional (2D) finite element (FE) solution, from which a set of cross-sectional eigen-values and eigen-functions are determined. This result is used to obtain the modal frequencies, velocities and the attenuation coefficients. The 2D FE solution is then extended to three-dimensional via the normal mode decomposition technique. The numerical solution is validated against experimental data for sound propagation in a pipe with inner walls partially covered by coarse sand or granulated rubber. The values of the eigen-frequencies calculated from the proposed numerical model are validated against those predicted by the standard analytical solution for both a circular and rectangular pipe with rigid walls. It is shown that the considered numerical method is useful for predicting the sound pressure distribution, attenuation, and eigen-frequencies in a duct with acoustically nonrigid boundary conditions. The purpose of this work is to pave the way for the development of an efficient inverse problem solution for the remote characterization of the acoustic boundary conditions in natural and artificial waveguides.  相似文献   

18.
A full-vectorial (FV) analysis of optical dielectric waveguide bends by using finite difference (FD) method in terms of magnetic field components is developed in a local cylindrical coordinate system. The perfectly matched layer absorbing boundary conditions via the complex coordinate stretching technique are incorporated into the FV wave equations for effectively demonstrating the leaky nature of waveguide bends, and a six-point FD scheme is constructed to approximate the cross-coupling terms for improving the convergent behavior. The leaky modes of a typical rib waveguide bend are calculated and the complex propagation constants and the field patterns for TE- and TM-like modes are obtained. Solutions are good agreement with those from the film mode matching method, which shows the validity and utility of the established method.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号