首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
This paper studies a simple asymmetrically evolved community network with a combination of preferential attachment and random properties. An important issue about community networks is to discover the different utility increments of two nodes, where the utility is introduced to investigate the asymmetrical effect of connecting two nodes. On the other hand, the connection of two nodes in community networks can be classified as two nodes belonging to the same or to different communities. The simulation results show that the model can reproduce a power-law utility distribution P (u) ~ u σ , σ = 2 + 1 p , which can be obtained by using mean-field approximation methods. Furthermore, the model exhibits exponential behaviour with respect to small values of a parameter denoting the random effect in our model at the low-utility region and a power-law feature with respect to big values of this parameter at the high-utility region, which is in good agreement with theoretical analysis. This kind of community network can reproduce a unique utility distribution by theoretical and numerical analysis.  相似文献   

2.
Motivated by the relationship of the dynamic behaviors and network structure, in this paper, we present two efficient dynamic community detection algorithms. The phases of the nodes in the network can evolve according to our proposed differential equations. In each iteration, the phases of the nodes are controlled by several parameters. It is found that the phases of the nodes are ultimately clustered into several communities after a short period of evolution. They can be adopted to detect the communities successfully. The second differential equation can dynamically adjust several parameters, so it can obtain satisfactory detection results. Simulations on some test networks have verified the efficiency of the presented algorithms.  相似文献   

3.
王晓华  焦李成  吴建设 《中国物理 B》2010,19(2):20501-020501
In this paper, we propose a simple model that can generate small-world network with community structure. The network is introduced as a tunable community organization with parameter r, which is directly measured by the ratio of inter-to intra-community connectivity, and a smaller r corresponds to a stronger community structure. The structure properties, including the degree distribution, clustering, the communication efficiency and modularity are also analysed for the network. In addition, by using the Kuramoto model, we investigated the phase synchronization on this network, and found that increasing the fuzziness of community structure will markedly enhance the network synchronizability; however, in an abnormal region (r ≤ 0.001), the network has even worse synchronizability than the case of isolated communities (r = 0). Furthermore, this network exhibits a remarkable synchronization behaviour in topological scales:the oscillators of high densely interconnected communities synchronize more easily, and more rapidly than the whole network.  相似文献   

4.
In this paper,the relationship between network synchronizability and the edge-addition of its associated graph is investigated.First,it is shown that adding one edge to a cycle definitely decreases the network synchronizability.Then,since sometimes the synchronizability can be enhanced by changing the network structure,the question of whether the networks with more edges are easier to synchronize is addressed.Based on a subgraph and complementary graph method,it is shown by examples that the answer is negative even if the network structure is arbitrarily optimized.This reveals that generally there are redundant edges in a network,which not only make no contributions to synchronization but actually may reduce the synchronizability.Moreover,a simple example shows that the node betweenness centrality is not always a good indicator for the network synchronizability.Finally,some more examples are presented to illustrate how the network synchronizability varies following the addition of edges,where all the examples show that the network synchronizability globally increases but locally fluctuates as the number of added edges increases.  相似文献   

5.
The identification of communities is significant for the understanding of network structures and functions. Since some nodes naturally belong to several communities, the study of overlapping community structures has attracted increasing attention recently, and many algorithms have been designed to detect overlapping communities. We propose a new algorithm. The main idea is first to find the core of a community by detecting maximal cliques and then merging some tight community cores to form the community. Experimental results on two real networks demonstrate that the present algorithm is more accurate for detecting overlapping community structures, compared with some well-known results and methods.  相似文献   

6.
张争珍  许文俊  曾上游  林家儒 《中国物理 B》2014,23(2):28902-028902
In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (〉 500), the small rewiring probability (≈0.02) and the small average connection probability (〈 0.1). Many previous research results support our results.  相似文献   

7.
韦笃取  张波  丘东元  罗晓曙 《中国物理 B》2010,19(10):100513-100513
Recent experimental evidence suggests that some brain activities can be assigned to small-world networks. In this work, we investigate how the topological probability p and connection strength C affect the activities of discrete neural networks with small-world (SW) connections. Network elements are described by two-dimensional map neurons (2DMNs) with the values of parameters at which no activity occurs. It is found that when the value of p is smaller or larger, there are no active neurons in the network, no matter what the value of connection strength is; for a given appropriate connection strength, there is an intermediate range of topological probability where the activity of 2DMN network is induced and enhanced. On the other hand, for a given intermediate topological probability level, there exists an optimal value of connection strength such that the frequency of activity reaches its maximum. The possible mechanism behind the action of topological probability and connection strength is addressed based on the bifurcation method. Furthermore, the effects of noise and transmission delay on the activity of neural network are also studied.  相似文献   

8.
刘锋  赵寒  李明  任丰原  朱衍波 《中国物理 B》2010,19(4):40513-040513
Due to the heterogeneity of the structure on a scale-free network,making the betweennesses of all nodes become homogeneous by reassigning the weights of nodes or edges is very difficult.In order to take advantage of the important effect of high degree nodes on the shortest path communication and preferentially deliver packets by them to increase the probability to destination,an adaptive local routing strategy on a scale-free network is proposed,in which the node adjusts the forwarding probability with the dynamical traffic load(packet queue length) and the degree distribution of neighbouring nodes.The critical queue length of a node is set to be proportional to its degree,and the node with high degree has a larger critical queue length to store and forward more packets.When the queue length of a high degree node is shorter than its critical queue length,it has a higher probability to forward packets.After higher degree nodes are saturated(whose queue lengths are longer than their critical queue lengths),more packets will be delivered by the lower degree nodes around them.The adaptive local routing strategy increases the probability of a packet finding its destination quickly,and improves the transmission capacity on the scale-free network by reducing routing hops.The simulation results show that the transmission capacity of the adaptive local routing strategy is larger than that of three previous local routing strategies.  相似文献   

9.
Complex networks have been studied across many fields of science in recent years.In this paper,we give a brief introduction of networks,then follow the original works by Tsonis et al (2004,2006) starting with data of the surface temperature from 160 Chinese weather observations to investigate the topology of Chinese climate networks.Results show that the Chinese climate network exhibits a characteristic of regular,almost fully connected networks,which means that most nodes in this case have the same number of links,and so-called super nodes with a very large number of links do not exist there.In other words,though former results show that nodes in the extratropical region provide a property of scale-free networks,they still have other different local fine structures inside.We also detect the community of the Chinese climate network by using a Bayesian technique;the effective number of communities of the Chinese climate network is about four in this network.More importantly,this technique approaches results in divisions which have connections with physics and dynamics;the division into communities may highlight the aspects of the dynamics of climate variability.  相似文献   

10.
In this paper,we study the dynamical behaviour of an epidemic on complex networks with population mobility.In our model,the number of people on each node is unrestricted as the nodes of the network are considered as cities,communities,and so on.Because people can travel between different cities,we study the effect of a population’smobility on the epidemic spreading.In view of the population’s mobility,we suppose that the susceptible individualcan be infected by an infected individual in the same city or other connected cities.Simulations are presented to verifyour analysis.  相似文献   

11.
张智  傅忠谦  严钢 《中国物理 B》2009,18(6):2209-2212
Synchronizability of complex oscillators networks has attracted much research interest in recent years. In contrast, in this paper we investigate numerically the synchronization speed, rather than the synchronizability or synchronization stability, of identical oscillators on complex networks with communities. A new weighted community network model is employed here, in which the community strength could be tunable by one parameter δ. The results showed that the synchronization speed of identical oscillators on community networks could reach a maximal value when δ is around 0.1. We argue that this is induced by the competition between the community partition and the scale-free property of the networks. Moreover, we have given the corresponding analysis through the second least eigenvalue λ2 of the Laplacian matrix of the network which supports the previous result that the synchronization speed is determined by the value of λ2.  相似文献   

12.
《Physics letters. A》2014,378(18-19):1239-1248
Synchronization is one of the most important features observed in large-scale complex networks of interacting dynamical systems. As is well known, there is a close relation between the network topology and the network synchronizability. Using the coupled Hindmarsh–Rose neurons with community structure as a model network, in this paper we explore how failures of the nodes due to random errors or intentional attacks affect the synchronizability of community networks. The intentional attacks are realized by removing a fraction of the nodes with high values in some centrality measure such as the centralities of degree, eigenvector, betweenness and closeness. According to the master stability function method, we employ the algebraic connectivity of the considered community network as an indicator to examine the network synchronizability. Numerical evidences show that the node failure strategy based on the betweenness centrality has the most influence on the synchronizability of community networks. With this node failure strategy for a given network with a fixed number of communities, we find that the larger the degree of communities, the worse the network synchronizability; however, for a given network with a fixed degree of communities, we observe that the more the number of communities, the better the network synchronizability.  相似文献   

13.
Asymmetric tree-like branched networks are explored by geometric algorithms. Based on the network, an analysis of the thermal conductivity is presented. The relationship between effective thermal conductivity and geometric structures is obtained by using the thermal-electrical analogy technique. In all studied cases, a clear behaviour is observed, where angle (δ, θ) among parent branching extended lines, branches and parameter of the geometric structures have stronger effects on the effective thermal conductivity. When the angle δ is fixed, the optical diameter ratio β is dependent on angle θ. Moreover, γ and m are not related to β . The longer the branch is, the smaller the effective thermal conductivity will be. It is also found that when the angle θ < δ/2, the higher the iteration m is, the lower the thermal conductivity will be and it tends to zero, otherwise, it is bigger than zero. When the diameter ratio β1 < 0.707 and angle δ is bigger, the optimal k of the perfect ratio increases with the increase of the angle δ; when β1 > 0.707, the optimal k decreases. In addition, the effective thermal conductivity is always less than that of single channel material. The present results also show that the effective thermal conductivity of the asymmetric tree-like branched networks does not obey Murray’s law.  相似文献   

14.
两层星形网络的特征值谱及同步能力   总被引:2,自引:0,他引:2       下载免费PDF全文
徐明明  陆君安  周进 《物理学报》2016,65(2):28902-028902
多层网络是当今网络科学研究的一个前沿方向.本文深入研究了两层星形网络的特征值谱及其同步能力的问题.通过严格导出的两层星形网络特征值的解析表达式,分析了网络的同步能力与节点数、层间耦合强度和层内耦合强度的关系.当同步域无界时,网络的同步能力只与叶子节点之间的层间耦合强度和网络的层内耦合强度有关;当叶子节点之间的层间耦合强度比较弱时,同步能力仅依赖于叶子节点之间的层间耦合强度;而当层内耦合强度比较弱时,同步能力依赖于层内耦合强度;当同步域有界时,节点数、层间耦合强度和层内耦合强度对网络的同步能力都有影响.当叶子节点之间的层间耦合强度比较弱时,增大叶子节点之间的层间耦合强度会增强网络的同步能力,而节点数、中心节点之间的层间耦合强度和层内耦合强度的增大反而会减弱网络的同步能力;而当层内耦合强度比较弱时,增大层内耦合强度会增强网络的同步能力,而节点数、层间耦合强度的增大会减弱网络的同步能力.进一步,在层间和层内耦合强度都相同的基础上,讨论了如何改变耦合强度更有利于同步.最后,对两层BA无标度网络进行数值仿真,得到了与两层星形网络非常类似的结论.  相似文献   

15.
孙娟  李晓霞  张金浩  申玉卓  李艳雨 《物理学报》2017,66(18):188901-188901
随着复杂网络同步的进一步发展,对复杂网络的研究重点由单层网络转向更加接近实际网络的多层有向网络.本文分别严格推导出三层、多层的单向耦合星形网络的特征值谱,并分析了耦合强度、节点数、层数对网络同步能力的影响,重点分析了层数和层间中心节点之间的耦合强度对多层单向耦合星形网络同步能力的影响,得出了层数对多层网络同步能力的影响至关重要.当同步域无界时,网络的同步能力与耦合强度、层数有关,同步能力随其增大而增强;当同步域有界时,对于叶子节点向中心节点耦合的多层星形网络,当层内耦合强度较弱时,层内耦合强度的增大会使同步能力增强,而层间叶子节点之间的耦合强度、层数的增大反而会使同步能力减弱;当层间中心节点之间的耦合强度较弱时,层间中心节点之间的耦合强度、层数的增大会使同步能力增强,层内耦合强度、层间叶子节点之间的耦合强度的增大反而会使同步能力减弱.对于中心节点向叶子节点耦合的多层星形网络,层间叶子节点之间的耦合强度、层数的增大会使同步能力增强,层内耦合强度、节点数、层间中心节点之间的耦合强度的增大反而会使同步能力减弱.  相似文献   

16.
Bocheng Ding 《中国物理 B》2022,31(8):83301-083301
We investigate the dissociation dynamics of core-excited $\mathrm{O}_2$ molecules using a high-resolution energy-resolved electron-ion coincidence experimental setup. The excited cationic states with two valence holes and one Rydberg electron are created after spectator Auger decay induced by $\mathrm{O}$ 1s $\rightarrow (^4\Sigma_{\rm u}^-)3{\rm s}\sigma$ core excitation in $\mathrm{O}_2$. From the energy correlation between the kinetic energy of the Auger electron and the ion kinetic energy release, we distinguish several dissociation channels. Rather complex dissociation channels of the spectator Auger final states are disclosed, which can be explained by the increased number of the crossing point due to the existence of Rydberg electron. The quantum system will evolve into different dissociation limits at each crossing point between the potential energy curves.  相似文献   

17.
Synchronization in complex networks with a modular structure   总被引:1,自引:0,他引:1  
Networks with a community (or modular) structure arise in social and biological sciences. In such a network individuals tend to form local communities, each having dense internal connections. The linkage among the communities is, however, much more sparse. The dynamics on modular networks, for instance synchronization, may be of great social or biological interest. (Here by synchronization we mean some synchronous behavior among the nodes in the network, not, for example, partially synchronous behavior in the network or the synchronizability of the network with some external dynamics.) By using a recent theoretical framework, the master-stability approach originally introduced by Pecora and Carroll in the context of synchronization in coupled nonlinear oscillators, we address synchronization in complex modular networks. We use a prototype model and develop scaling relations for the network synchronizability with respect to variations of some key network structural parameters. Our results indicate that random, long-range links among distant modules is the key to synchronization. As an application we suggest a viable strategy to achieve synchronous behavior in social networks.  相似文献   

18.
Jianshe Wu  Xiaohua Wang 《Physica A》2012,391(3):508-514
In this paper, we propose a simple random network model with overlapping communities controlled by several parameters, and investigate the influence of the overlapping community structure on the synchronization behavior under different parameters. It is found that the synchronizability of the network is mainly influenced by the overlapping size of the communities and the connectivity density of the overlapped group to the other interrelated communities, and has nothing to do with the intra-connectivity of the overlapped group. In addition, it is found that the highly interconnected communities can be almost synchronized in a given time scale, whereas the overlapped group is far from synchronization. Furthermore, the instantaneous frequencies of the nodes in the communities and their overlapped group are also investigated, which show that the nodes in the overlapped group will exhibit a remarkable oscillation with a weighted mean frequency of the other correlative communities.  相似文献   

19.
In this paper, the networks with optimal synchronizability are obtained using the local structure information. In scale-free networks, a node will be coupled by its neighbors with maximal degree among the neighbors if and only if the maximal degree is larger than its own degree. If the obtained coupled networks are connected, they are synchronization optimal networks. The connection probability of coupled networks is greatly affected by the average degree which usually increases with the average degree. This method could be further generalized by taking into account the degree of next-nearest neighbors, which will sharply increase the connection probability. Compared to the other proposed methods that obtain synchronization optimal networks, our method uses only local structure information and can hold the structure properties of the original scale-free networks to some extent. Our method may present a useful way to manipulate the synchronizability of real-world scale-free networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号