首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Fast MR imaging attracts the interest of both clinicians and physicists because new diagnostic information arises with reduced artifacts due to short investigational times. With the acceleration of the Snapshot FLASH MR sequence, the measurement of high-resolution images with 256 x 256 matrix is reported, together with contrasting prepulses that are applied to attain contrast in combination with higher in-plane resolution. Measuring times are in the range of a second. For whole-body imaging, a TR = 5.2 msec and a TE = 2.6 msec could be attained measuring omit 256 x 256 matrix images. Artifact-free images demonstrating T1 contrast and contrast from chemical shift are performed on moving organs (heart, intestine) in different experiments. These applications can easily be performed in a couple of minutes for clinical use. Especially in the lung, short TE and high resolution result in a new imaging quality of pulmonary and mediastinal vessels.  相似文献   

2.
Pediatric oncology patients with large metallic prostheses were imaged with one of two MR imaging techniques: 1) the "tilted view-angle" technique, 2) or a higher readout bandwidth technique. The tilted view-angle method uses an additional gradient in the slice selection direction during readout. The high bandwidth technique increases the readout bandwidth and shortens the echo time (TE). High bandwidth and short echo times were implemented in both T(1)-weighted (T(1)W) turbo spin echo and turbo short tau inversion recovery (STIR) sequences. Both imaging techniques reduced the size of metal-induced image artifacts. The tilted view-angle method reduced the artifact to a greater degree but had inherent shortcomings. The reformatted images were blurred and shifted. The area of interest was often moved outside of the field of view, unless parameters were adjusted on the basis of a pre-scan calculation. The high readout bandwidth, short echo technique required no special preparation and reduced metal artifacts without image blurring. The combination of high-bandwidth, shorter echo turbo STIR and T(1)W turbo spin echo sequences with subtraction of pre- from post-contrast images allowed effective fat suppression without local field inhomogeneity affects. This greatly improved our ability to evaluate suspected disease near metallic implants in pediatric cancer patients.  相似文献   

3.
We retrospectively examined MR images in 82 patients to evaluate the usefulness of short inversion time inversion recovery (STIR) in bone marrow imaging at 0.5 and 1.5 T. The study included 56 patients at 1.5 T and 26 patients at 0.5 T with a variety of pathologic bone marrow lesions (principally oncological), and compared the contrast and image quality of STIR imaging with spin-echo short repetition time/echo time (TR/TE), long TR/TE, and gradient-echo sequences. The pulse sequences were adjusted for optimal image quality, contrast, and fat nulling. STIR appears especially useful for the evaluation of red marrow (e.g., spine), where contrast between normal and infiltrated marrow is greater than with either gradient-echo or T1-weighted images. STIR is also extremely sensitive for evaluation of osteomyelitis, including soft tissue extent. In more peripheral (yellow) marrow, T1-weighted images are usually as sensitive as STIR. Limitations of STIR include artifacts, in particular motion artifact that at high field strength necessitates motion compensation. At 0.5 T, however, motion compensation is usually not necessary. Also, because of extreme sensitivity to water content, STIR may overstate the margins of a marrow lesion. With these limitations in mind, STIR is a very effective pulse sequence at both 0.5 and 1.5 T for evaluation of marrow abnormalities.  相似文献   

4.
Gradient moment nulling techniques for refocussing of spin dephasing resulting from movement during application of magnetic resonance imaging gradients have gained widespread application. These techniques offer advantages over conventional imaging gradients by reducing motion artifacts due to intraview motion, and by recovering signal lost from spin dephasing. This paper presents a simple technique for designing multiecho imaging gradient waveforms that refocus dephasing from the interaction of imaging gradients and multiple derivatives of position. Multiple moments will be compensated at each echo. The method described relies on the fact that the calculation of time moments for nulled moment gradient waveforms is independent of the time origin chosen. Therefore, waveforms used to generate the second echo image for multiple echo sequences with echo times given by TEn = TE1 + (n - 1) * (TE2 - TE1) may also be used for generation of the third and additional echo images. All echoes will refocus the same derivatives of position. Multiecho, multimoment refocussing (MEM-MO-RE) images through the liver in a patient with ampullary adenocarcinoma metastatic to the liver demonstrate the application of the method in clinical scanning.  相似文献   

5.
Recently, a new technique has been demonstrated which effectively refocusses the dephasing effects of spins moving during application of MR imaging gradients. This paper presents an analysis of imaging axes significance in spin dephasing for motion occurring along the slice select, read and phase-encoding directions. A flow phantom under constant flow conditions in all experiments was used to provide complete spin dephasing when "traditional" imaging gradients were used. The MAST technique was used to refocus along various combinations of imaging axes, and variable number of terms from the Taylor expansion of motion along them. Results indicate that motion along any imaging axis can be refocussed effectively when MAST gradients are used along only the slice select and read axis.  相似文献   

6.
In magnetic resonance imaging (MRI), T(2)(*)-weighted contrast is significantly enhanced by extremely high magnetic field strength, offering broad potential applications. However, the T(2)(*)-weighted image contrast distortion and signal loss artifact arising from discontinuities of magnetic susceptibility within and around the sample are also increased, limiting utilization of high field systems for T(2)(*)-weighted contrast applications. Due to the B(0) dependence of the contrast distortions and signal losses, and the heterogeneity of magnetic susceptibility in biological samples, magnetic susceptibility artifacts worsen dramatically for in vivo microimaging at higher fields. Practical applications of T(2)(*)-sensitive techniques enhanced by higher magnetic fields are therefore challenged. This report shows that magnetic susceptibility artifacts dominate T(2)(*)-weighted image contrast at 14 T, and demonstrates that the GESEPI (gradient echo slice excitation profile imaging) technique effectively reduces or eliminates these artifacts at long TE in the highest field (14 T) currently available for (1)H imaging.  相似文献   

7.
The purpose of this study was to quantitatively evaluate in a phantom model the practical impact of alteration of key imaging parameters on image quality and artifacts for the most commonly used fast T(2)-weighted MR sequences. These include fast spin-echo (FSE), single shot fast spin-echo (SSFSE), and spin-echo echo-planar imaging (EPI) pulse sequences. We developed a composite phantom with different T1 and T2 values, which was evaluated while stationary as well as during periodic motion. Experiments involved controlled variations in key parameters including effective TE, TR, echo spacing (ESP), receive bandwidth (BW), echo train length (ETL), and shot number (SN). Quantitative analysis consisted of signal-to-noise ratio (SNR), image nonuniformity, full-width-at-half-maximum (i.e., blurring or geometric distortion) and ghosting ratio. Among the fast T(2)-weighted sequences, EPI was most sensitive to alterations in imaging parameters. Among imaging parameters that we tested, effective TE, ETL, and shot number most prominently affected image quality and artifacts. Short T(2) objects were more sensitive to alterations in imaging parameters in terms of image quality and artifacts. Optimal clinical application of these fast T(2)-weighted imaging pulse sequences requires careful attention to selection of imaging parameters.  相似文献   

8.
Locally focused magnetic resonance imaging (LF MRI) allows imaging with variable spatial resolution within the field of view (FOV). Because LF MRI uses a priori information to provide locally high resolution in regions with rapid spatial variations in intensity (e.g., blood/tissue interface), it allows accurate reproduction of intense sharp edges in the specimen without blurring and truncation artifacts. This study employs LF MRI for 3D imaging of stationary and pulsatile flow. In the implemented version of LF MRI analytically defined basis functions are used to determine image intensity in regions depicted with low or high resolution. It is demonstrated that LF MRI of flow allows a significant (i.e. 3-4 times) reduction in scan time as compared to conventional FT MRI. It is also shown that LF images of pulsatile flow have a decreased appearance of ghosting artifacts as compared to the images reconstructed by using the conventional method.  相似文献   

9.
With improved B 0 homogeneity along with satisfactory gradient performance at high magnetic fields, snapshot gradient-recalled echo-planar imaging (GRE-EPI) would perform at long echo times (TEs) on the order of T2*, which intrinsically allows obtaining strongly T2*-weighted images with embedded substantial anatomical details in ultrashort time. The aim of this study was to investigate the feasibility and quality of long TE snapshot GRE-EPI images of rat brain at 9.4 T. When compensating for B 0 inhomogeneities, especially second-order shim terms, a 200 x 200 microm2 in-plane resolution image was reproducibly obtained at long TE (>25 ms). The resulting coronal images at 30 ms had diminished geometric distortions and, thus, embedded substantial anatomical details. Concurrently with the very consistent stability, such GRE-EPI images should permit to resolve functional data not only with high specificity but also with substantial anatomical details, therefore allowing coregistration of the acquired functional data on the same image data set.  相似文献   

10.
Half-Fourier imaging is useful for reducing imaging time by requiring less than the usual number of phase-encoding steps. This increase in speed can be traded off for longer repeat times, TR, for improved contrast-to-noise in the same imaging time or to collect short asymmetric echoes. Consequently, it is shown to be especially useful for long TR spin-echo imaging where at 1.5 T a repeat time of 4 sec is recommended for a double-echo TE = 30/90 sequence or 3 sec for a double-echo TE = 15/90 sequence. Short TR FLASH imaging also benefits from a longer TR since there is more time to spoil the signal. In both cases, there is the advantage when a multislice acquisition mode is used that more slices (and hence, a larger volume) can be taken. Another application is to apply half-Fourier imaging in the read direction to avoid spin dephasing and motion artifacts. This is particularly useful in angiographic imaging where smaller pixel sizes and shorter echo times both reduce pixel dephasing. Again, even though taking less than the usual number of data points leads to a reduction in S/N, the improved signal and resolution for blood vessels can more than compensate this loss.  相似文献   

11.
Gated and nongated magnetic resonance (MR) scans of the chest were compared in five normal volunteers and 20 patients with chest disease to determine possible advantages of gated MR for delineation of noncardiac mediastinal anatomy. In order to compare gated and nongated images of the chest using similar imaging parameters, five spin-echo sequences were obtained in each of five normal volunteers: TR: 1000 msec, TE: 30 msec; gated to every heart beat (TR approximately 1000 msec, TE: 30 msec); TR: 2000 msec, TE: 30 msec; gated to every other heart beat (TR approximately 2000 msec), TE: 30 msec; TR: 500 msec, TE: 30 msec. In the 20 patients, the gated images were gated to every heart beat and the nongated images were obtained using a TR of 2000 msec, both with a TE of 30 msec. The noise in the periphery and in the center of the gated and nongated images at the level of the carina was compared in the five normal volunteers, using the signal intensity of the posterior chest wall as a control. There was 92% +/- 44% greater noise in the central region and 63% +/- 60% greater noise in the peripheral region on the nongated studies (TR: 1000 msec), than on the studies gated to every heart beat. In three of the five volunteers, the measured noise was greater on the nongated long TR (2000 msec) images than on the images gated to every other heart beat. However, the mediastinal structures below the level of the aortic arch were much better defined on the gated images in all five subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Objective: Magnetic resonance imaging (MRI) acquisition is inherently sensitive to motion, and motion artifact reduction is essential for improving image quality in MRI. Methods: We developed a deep residual network with densely connected multi-resolution blocks (DRN-DCMB) model to reduce the motion artifacts in T1 weighted (T1W) spin echo images acquired on different imaging planes before and after contrast injection. The DRN-DCMB network consisted of multiple multi-resolution blocks connected with dense connections in a feedforward manner. A single residual unit was used to connect the input and output of the entire network with one shortcut connection to predict a residual image (i.e. artifact image). The model was trained with five motion-free T1W image stacks (pre-contrast axial and sagittal, and post-contrast axial, coronal, and sagittal images) with simulated motion artifacts. Results: In other 86 testing image stacks with simulated artifacts, our DRN-DCMB model outperformed other state-of-the-art deep learning models with significantly higher structural similarity index (SSIM) and improvement in signal-to-noise ratio (ISNR). The DRN-DCMB model was also applied to 121 testing image stacks appeared with various degrees of real motion artifacts. The acquired images and processed images by the DRN-DCMB model were randomly mixed, and image quality was blindly evaluated by a neuroradiologist. The DRN-DCMB model significantly improved the overall image quality, reduced the severity of the motion artifacts, and improved the image sharpness, while kept the image contrast. Conclusion: Our DRN-DCMB model provided an effective method for reducing motion artifacts and improving the overall clinical image quality of brain MRI.  相似文献   

13.
PurposeTo improve image quality of multi-contrast imaging with the proposed Autocalibrated Parallel Imaging Reconstruction for Extended Multi-Contrast Imaging (APIR4EMC).MethodsAPIR4EMC reconstructs multi-contrast images in an autocalibrated parallel imaging reconstruction framework by adding contrasts as virtual coils. Compensation of signal evolution along the echo train of different contrasts is performed to improve signal prediction for missing samples. As a proof of concept, we performed prospectively accelerated phantom and in-vivo brain acquisitions with T1, T1-fat saturated (Fatsat), T2, PD, and FLAIR contrasts. The k-space sampling patterns of these acquisitions were jointly optimized. Images were jointly reconstructed with the proposed APIR4EMC method as well as individually with GRAPPA. Root mean square error (RMSE) to fully sampled reference images and g-factor maps were computed for both methods in the phantom experiment. Visual evaluation was performed in the in-vivo experiment.ResultsCompared to GRAPPA, APIR4EMC reduced artifacts and improved SNR of the reconstructed images in the phantom acquisitions. Quantitatively, APIR4EMC substantially reduced noise amplification (g-factor) as well as RMSE compared to GRAPPA. Signal evolution compensation reduced artifacts. In the in-vivo experiments, 1 mm3 isotropic 3D images with contrasts of T1, T1-Fatsat, T2, PD, and FLAIR were acquired in as little as 7.5 min with the acceleration factor of 9. Reconstruction quality was consistent with the phantom results.ConclusionCompared to single contrast reconstruction with GRAPPA, APIR4EMC reduces artifacts and noise amplification in accelerated multi-contrast imaging.  相似文献   

14.
PurposeTo reduce artifacts and scan time of GRASE imaging by selecting an optimal sampling pattern and jointly reconstructing gradient echo and spin echo images.MethodsWe jointly reconstruct images for the different echo types by considering these as additional virtual coil channels in the novel Autocalibrated Parallel Imaging Reconstruction with Sampling Pattern Optimization for GRASE (APIR4GRASE) method. Besides image reconstruction, we identify optimal sampling patterns for the acquisition. The selected optimal patterns were validated on phantom and in-vivo acquisitions. Comparison to the conventional GRASE without acceleration, and to the GRAPPA reconstruction with a single echo type was also performed.ResultsUsing identified optimal sampling patterns, APIR4GRASE eliminated modulation artifacts in both phantom and in-vivo experiments; mean square error (MSE) was reduced by 78% and 94%, respectively, compared to the conventional GRASE with similar scan time. Both artifacts and g-factor were reduced compared to the GRAPPA reconstruction with a single echo type.ConclusionAPIR4GRASE substantially improves the speed and quality of GRASE imaging over the state-of-the-art, and is able to reconstruct both spin echo and gradient echo images.  相似文献   

15.
Radial imaging techniques, such as projection-reconstruction (PR), are used in magnetic resonance imaging (MRI) for dynamic imaging, angiography, and short-T2 imaging. They are less sensitive to flow and motion artifacts, and support fast imaging with short echo times. However, aliasing and streaking artifacts are two main sources which degrade radial imaging quality. For a given fixed number of k-space projections, data distributions along radial and angular directions will influence the level of aliasing and streaking artifacts. Conventional radial k-space sampling trajectory introduces an aliasing artifact at the first principal ring of point spread function (PSF). In this paper, a shaking projection (SP) k-space sampling trajectory was proposed to reduce aliasing artifacts in MR images. SP sampling trajectory shifts the projection alternately along the k-space center, which separates k-space data in the azimuthal direction. Simulations based on conventional and SP sampling trajectories were compared with the same number projections. A significant reduction of aliasing artifacts was observed using the SP sampling trajectory. These two trajectories were also compared with different sampling frequencies. ASP trajectory has the same aliasing character when using half sampling frequency (or half data) for reconstruction. SNR comparisons with different white noise levels show that these two trajectories have the same SNR character. In conclusion, the SP trajectory can reduce the aliasing artifact without decreasing SNR and also provide a way for undersampling recon- struction. Furthermore, this method can be applied to three-dimensional (3D) hybrid or spherical radial k-space sampling for a more efficient reduction of aliasing artifacts.  相似文献   

16.
Diffusion magnetic resonance imaging (MRI) was performed with a high-resolution segmented echo-planar imaging technique, which provided images with substantially less susceptibility artifacts than images obtained with single-shot echo-planar imaging (EPI). Diffusion imaging performed with any multishot pulse sequence is inherently sensitive to motion artifacts and in order to reduce motion artifacts, the presented method utilizes navigator echo phase corrections, performed after a one-dimensional Fourier transform along the frequency-encoding direction. Navigator echo phases were fitted to a straight line prior to phase correction to avoid errors from internal motion. In vivo imaging was performed using electro cardiographic (ECG) triggering. Apparent diffusion coefficient (ADC) maps were calculated on a pixel-by-pixel basis using up to seven diffusion sensitivities, ranging from b = 0 to 1129 x 10(6) s/m(2).  相似文献   

17.
PurposeWhile O-Space imaging is well known to accelerate image acquisition beyond traditional Cartesian sampling, its advantages compared to undersampled radial imaging, the linear trajectory most akin to O-Space imaging, have not been detailed. In addition, previous studies have focused on ultrafast imaging with very high acceleration factors and relatively low resolution. The purpose of this work is to directly compare O-Space and radial imaging in their potential to deliver highly undersampled images of high resolution and minimal artifacts, as needed for diagnostic applications. We report that the greatest advantages to O-Space imaging are observed with extended data acquisition readouts.Theory and methodsA sampling strategy that uses high resolution readouts is presented and applied to compare the potential of radial and O-Space sequences to generate high resolution images at high undersampling factors. Simulations and phantom studies were performed to investigate whether use of extended readout windows in O-Space imaging would increase k-space sampling and improve image quality, compared to radial imaging.ResultsExperimental O-Space images acquired with high resolution readouts show fewer artifacts and greater sharpness than radial imaging with equivalent scan parameters. Radial images taken with longer readouts show stronger undersampling artifacts, which can cause small or subtle image features to disappear. These features are preserved in a comparable O-Space image.ConclusionsHigh resolution O-Space imaging yields highly undersampled images of high resolution and minimal artifacts. The additional nonlinear gradient field improves image quality beyond conventional radial imaging.  相似文献   

18.
BACKGROUND: We wished to assess the feasibility of imaging the knee with ultrashort TE (UTE) pulse sequences. SUBJECTS AND METHODS: Five volunteers and 16 patients were studied with UTE (TE=0.08 ms) sequences including later echoes. Conventional fat-suppressed images and difference images were also produced by subtracting a later echo from the first. Gadodiamide enhancement was used. RESULTS: High signal was obtained in tendons, ligaments, menisci and periosteum. Normal contrast enhancement was seen in these structures. Deep and superficial layers were seen in the articular cartilage. Cartilage defects were identified. The red zone could be differentiated from the white zone of the meniscus. Meniscal tears and degeneration were observed with low signal on subtraction images. Enhancement was seen within the anterior and posterior cruciate ligaments and associated scar tissue. CONCLUSION: Ultrashort TE imaging provides new options to visualize anatomy, manipulate conspicuity, observe contrast enhancement and demonstrate disease of the knee.  相似文献   

19.
Apparent streak-like artifacts will present in reconstructed images due to excessive quantum noise in low-dose X-ray imaging process. Dealing with the noisy sinogram before a filtered back-projection (FBP) is a useful solution to solve this noise problem. In this paper, we proposed a novel noise restoration method combining wavelet and fuzzy logical technology for low-dose computed tomography (CT) sinogram. The method first utilizes stationary wavelet transform on the noisy sinogram, namely decomposes the sinogram to different resolution levels. And then, at each decomposed resolution level, a fuzzy shrinkage filter is applied to restore the noise-contaminated wavelet coefficients. Simulations were performed and indicated that the proposed method could significantly suppress noise and reduced streak-like artifacts in reconstructed images while at the same time maintaining the image sharpness.  相似文献   

20.
Visualization of short echo time (TE) metabolites in prostate magnetic resonance spectroscopic imaging is difficult due to lipid contamination and pulse timing constraints. In this work, we present a modified pulse sequence to permit short echo time (TE=40ms) acquisitions with reduced lipid contamination for the detection of short TE metabolites. The modified pulse sequence employs the conformal voxel MRS (CV-MRS) technique, which automatically optimizes the placement of spatial saturation planes to adapt the excitation volume to the shape of the prostate, thus reducing lipid contamination in prostate magnetic resonance spectroscopic imaging (MRSI). Metabolites were measured and assessed using a modified version of LCModel for analysis of in vivo prostate spectra. We demonstrate the feasibility of acquiring high quality spectra at short TEs, and show the measurement of short TE metabolites, myo-inositol, scyllo-inositol, taurine and glutamine/glutamate for both single and multi-voxel acquisitions. In single voxels experiments, the reduction in TE resulted in 57% improvement in the signal-to-noise ratio (SNR). Additional 3D MRSI experiments comparing short (TE=40 ms), and long (TE=130 ms) TE acquisitions revealed a 35% improvement in the number of adequately fitted metabolite peaks (775 voxels over all subjects). This resulted in a 42 ± 24% relative improvement in the number of voxels with detectable citrate that were well-fitted using LCmodel. In this study, we demonstrate that high quality prostate spectra can be obtained by reducing the TE to 40 ms to detect short T2 metabolites, while maintaining positive signal intensity of the spin-coupled citrate multiplet and managing lipid suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号